Section 4.3/4.4 Exponential growth/decay
Thm 8: Suppose c, k are constants. Then

$$
\frac{d y}{d x}=k y \text { if and only if } y=c e^{k x}
$$

I.e., If the (instantaneous) rate of change of y with respect to x is proportional to y, then

Section 4.3: $k>0$ implies exponential growth.
Section 4.4: $k<0$ implies exponential decay.
For simplicity, take $k>0$. Then in section 4.4,
Section 4.4 version of Thm 8: Suppose c, k are constants. Then

$$
\frac{d y}{d x}=-k y \text { if and only if } y=c e^{-k x}
$$

I.e., If the (instantaneous) rate of change of y with respect to x is proportional to y, then we have exponential decay since $-k<0$.

Initial Value Problem (IVP): $\frac{d y}{d x}=k y, y\left(x_{0}\right)=y_{0}$ if and only if $y=c e^{k x}, y_{0}=c e^{k x_{0}} \Rightarrow c=\frac{y_{0}}{e^{k x_{0}}}$

Hence $y=c e^{k x}$ where $c=\frac{y_{0}}{e^{k x_{0}}}$

Precalculus:
Let $P(0)=P_{0}$
Section 4.3, $k>0$:
Doubling time $=$ generation time: If $P(t)=P_{0} e^{k t}$, then at what time t is $P(t)=2 P_{0}$
$2 P_{0}=P_{0} e^{k t} \Rightarrow 2=e^{k t} \Rightarrow \ln (2)=\ln \left(e^{k t}\right)=k t \Rightarrow t=\frac{\ln (2)}{k}$
Section 4.4, $-k<0$:
Half life: If $P(t)=P_{0} e^{-k t}$, then at what time t is $P(t)=\frac{1}{2} P_{0}$

$$
\begin{aligned}
& \frac{1}{2} P_{0}=P_{0} e^{-k t} \\
& \quad \Rightarrow \frac{1}{2}=e^{-k t} \\
& \quad \Rightarrow 2=e^{k t} \Rightarrow \ln (2)=\ln \left(e^{k t}\right)=k t \Rightarrow t=\frac{\ln (2)}{k}
\end{aligned}
$$

You do NOT need to know the following for either exam 1 b or exam 2 :
Thm 11: Newton's law of cooling
The rate of change of temperature T with respect to time t is given by

$$
\frac{d T}{d t}=-k(T-S)
$$

where $k>0$ is the proportionality constant, and S is the constant temperature of the surrounding medium.
Hence $T(t)=P_{0} e^{-k t}+S$ where $P_{0}=T(0)-C$
Proof: $T^{\prime}=-k(T-S) \Rightarrow \frac{T^{\prime}}{T-S}=-k \Rightarrow \ln |T-S|=-k t+C_{1}$, for some constant C_{1}
$|T-S|=e^{|n| T-S \mid}=e^{-k t+C_{1}}=e^{-k t} e^{C_{1}}$
Hence $T-S=C_{2} e^{-k t}$ for some constant C_{2}
When $t=0, T(0)-S=C_{2} e^{0}=C_{2}$
Hence $T(t)=P_{0} e^{-k t}+S$ where $P_{0}=T(0)-C$

