Biology application: Suppose the number of bacteria grow at an average rate or $r=10 \%$ per hour. If the initial population is 100 bacteria, find the number of bacteria after 1 hour, after 2 hours, after T hours.

Identical application, but in Finance:
Let $P(t)=$ amount in an account at time t (in years).
Ex 1: Suppose $\$ 100$ is deposited in the account earning an interest rate of $r=10 \%$ per year. Find the amount in the account after 1 year, after 2 years, after 3 years, and after T years.
$t=0: P(0)=\$ 100$
$t=1: P(1)=100(1+0.1)=100(1.1)=\$ 110$
$t=2: P(2)=100(1+0.1)(1+0.1)=100(1+0.1)^{2}=100(1.1)^{2}=\$ 121$
$t=3: P(3)=100(1+0.1)^{3}=\$ 100(1.1)^{3}=133.10$
\vdots
$t=T: P(T)=100(1+0.1)^{T}=\$ 100(1.1)^{T}$
The average interest rate earned is 10% per year.
The average rate of change in the account btwn year 0 and year 1 :

$$
\frac{P(1)-P(0)}{1}=100(1.1)-100=100(0.1)=\$ 10 / \text { year } .
$$

The average rate of change between year t and year $t+1$:

$$
\frac{P(t+1)-P(t)}{1}=100(1.1)^{t+1}-100(1.1)^{t}=\$ 100(1.1)^{t}(0.1) / \text { year } .
$$

Instantaneous rate of change at time t :

$$
P^{\prime}(t)=\left[100(1.1)^{t}\right]^{\prime}=100 \ln (1.1)(1.1)^{t}=(9.53102 \ldots) \cdot(1.1)^{t}
$$

At $t=1: P^{\prime}(1)=100 \ln (1.1)(1.1)=10.48 \ldots$

Ex 2: Suppose $\$ 100$ is deposited in the account earning an interest rate of $r=10 \%$ per year, compounded monthly. Find the amount in the account after 1 month, 1 year, 2 years, and T years.
$t=0: P(0)=\$ 100$
$t=1$ month: $P\left(\frac{1}{12}\right)=100\left(1+\frac{0.1}{12}\right)=\$ 100.83$
$t=1$ year: $P(1)=100\left(1+\frac{0.1}{12}\right)^{12}=\$ 110.47$
$t=2$ years: $P(2)=100\left(1+\frac{0.1}{12}\right)^{12 \cdot 2}=\$ 122.04$
$t=T$ years: $P(T)=100\left(1+\frac{0.1}{12}\right)^{12 \cdot T}=\$ 100(1.1047 \ldots)^{T}$
The average interest rate earned is $\frac{10}{12} \%$ per month.
The average interest rate earned is $10.47 \ldots \%$ per year.
The average rate of change between year t and year $t+1$:

$$
\begin{aligned}
\frac{P(t+1)-P(t)}{1} & =100\left(1+\frac{0.1}{12}\right)^{12(t+1)}-100\left(1+\frac{0.1}{12}\right)^{12 t} \\
& =\$ 100\left(1+\frac{0.1}{12}\right)^{12 t}\left[\left(1+\frac{0.1}{12}\right)^{12}-1\right] / \text { year. }
\end{aligned}
$$

The approximate average rate of change between year t and year $t+1$:

$$
\begin{aligned}
\frac{P(t+1)-P(t)}{1} & =100(1.1047)^{t+1}-100(1.1047)^{t} \\
& =\$ 100(1.1047)^{t}(0.1047) / \text { year }
\end{aligned}
$$

The instantaneous rate of change at time t :

$$
\begin{aligned}
P^{\prime}(t)=\left[100\left(1+\frac{0.1}{12}\right)^{12 \cdot t}\right]^{\prime}= & 100 \ln \left[\left(1+\frac{0.1}{12}\right)^{12}\right] \cdot\left[\left(1+\frac{0.1}{12}\right)^{12}\right]^{t} \\
= & 1200 \ln \left(1+\frac{0.1}{12}\right) \cdot\left(1+\frac{0.1}{12}\right)^{12 t} \\
& =(9.95856 \ldots) \cdot\left(1+\frac{0.1}{12}\right)^{12 t}
\end{aligned}
$$

At $t=1: P^{\prime}(1)=1200 \ln \left(1+\frac{0.1}{12}\right) \cdot\left(1+\frac{0.1}{12}\right)^{12}=11.001 \ldots$
At $t=\frac{1}{12}, P^{\prime}\left(\frac{1}{12}\right)=1200 \ln \left(1+\frac{0.1}{12}\right) \cdot\left(1+\frac{0.1}{12}\right)=10.0416$

Ex 3: Suppose $\$ 100$ is deposited in the account earning an interest rate of $r=10 \%$ per year, compounded daily. Find the amount in the account after 1 day, 1 year, 2 years, and T years.
$t=0: P(0)=\$ 100$
$t=1$ day: $P\left(\frac{1}{356}\right)=100\left(1+\frac{0.1}{365}\right)=\$ 100.03$
$t=1$ year: $P(1)=100\left(1+\frac{0.1}{365}\right)^{365}=\$ 110.52$
$t=2$ years: $P(2)=100\left(1+\frac{0.1}{365}\right)^{365 \cdot 2}=\$ 122.14$
\vdots
$t=T$ years: $P(T)=100\left(1+\frac{0.1}{365}\right)^{365 \cdot T}=\$ 100(1.10515578 \ldots)^{T}$
The average interest rate earned is $\frac{10}{365} \%$ per day.
The average interest rate earned is $10.515578 \ldots \%$ per year.
The average rate of change between year t and year $t+1$:

$$
\begin{aligned}
\frac{P(t+1)-P(t)}{1} & =100\left(1+\frac{0.1}{365}\right)^{365(t+1)}-100\left(1+\frac{0.1}{365}\right)^{365 t} \\
& =\$ 100\left(1+\frac{0.1}{365}\right)^{365 t}\left[\left(1+\frac{0.1}{365}\right)^{365}-1\right] / \text { year. }
\end{aligned}
$$

The instantaneous rate of change at time t :

$$
\begin{array}{r}
P^{\prime}(t)=\left[100\left(1+\frac{0.1}{365}\right)^{365 \cdot t}\right]^{\prime}=100 \ln \left[\left(1+\frac{0.1}{365}\right)^{365}\right] \cdot\left[\left(1+\frac{0.1}{365}\right)^{365}\right]^{t} \\
=36500 \ln \left(1+\frac{0.1}{365}\right) \cdot\left(1+\frac{0.1}{365}\right)^{365 t} \\
=(9.99863 \ldots) \cdot\left(1+\frac{0.1}{365}\right)^{365 t}
\end{array}
$$

At $t=1: P^{\prime}(1)=36500 \ln \left(1+\frac{0.1}{365}\right) \cdot\left(1+\frac{0.1}{365}\right)^{365}=11.05 \ldots$
At $t=\frac{1}{365}, P^{\prime}\left(\frac{1}{365}\right)=36500 \ln \left(1+\frac{0.1}{365}\right) \cdot\left(1+\frac{0.1}{365}\right)=10.00 \ldots$

Ex 4: Suppose $\$ 100$ is deposited in the account earning an interest rate of $r=10 \%$ per year, compounded n times per year. Find the amount in the account after T years.
$t=T$ years: $P(T)=100\left(1+\frac{0.1}{n}\right)^{n \cdot T}$
Ex 5: Suppose $\$ 100$ is deposited in the account earning an interest rate of $r=10 \%$ per year, compounded continuously. Find the amount in the account after T years.
$t=T$ years: $P(T)=\lim _{n \rightarrow \infty} 100\left(1+\frac{0.1}{n}\right)^{n \cdot T}=100 e^{0.1 T}$
Definition $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=2.7 \ldots$
FYI : By Taylor series approximation from Calculus II

$$
\begin{aligned}
e^{0.1 T} & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n(0.1) T}=\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{n}\right)^{0.1}\right]^{n T} \\
& =\lim _{n \rightarrow \infty}\left[1+\frac{0.1}{n}-\frac{0.045}{n^{2}}+\frac{0.0285}{n^{3}}-\ldots\right]^{n T}=\lim _{n \rightarrow \infty}\left[1+\frac{0.1}{n}\right]^{n T}
\end{aligned}
$$

Ex 6: Suppose $\$ P_{0}$ is deposited in the account earning an interest rate of $r=s \%$ per year $\left(r=\frac{s}{100}\right)$, compounded continuously.
t years: $P(t)=\lim _{n \rightarrow \infty} P_{0}\left(1+\frac{r}{n}\right)^{n \cdot t}=P_{0} e^{r t}$
Ex 7: Suppose $\$ 1$ is deposited in the account earning an interest rate of $r=10 \%$ per year $\left(r=\frac{100}{100}=1\right)$, compounded continuously. t years: $P(t)=\lim _{n \rightarrow \infty}\left(1+\frac{.1}{n}\right)^{n \cdot t}=e^{0.1 t}$

Note the instantaneous rate of change is $10 \%=0.1 e^{0.1 t}$

$$
\text { That is } P^{\prime}(t)=\left[e^{0.1 t}\right]^{\prime}=0.1 e^{0.1 t}
$$

Ex 8: Suppose $\$ 1$ is deposited in the account earning an interest rate of $r=100 \%$ per year $\left(r=\frac{100}{100}=1\right)$, compounded continuously. t years: $P(t)=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n \cdot t}=e^{t}$

Note the instantaneous rate of change is $100 \%=e^{t}$
That is $P^{\prime}(t)=\left[e^{t}\right]^{\prime}=e^{t}$

