Defn: M is an n-dimensional manifold (with boundary) if

1.) For all $x \in M$, there exists a neighborhood V_x such that V_x is homeomorphic to an open set in \mathbb{R}^n or \mathbb{R}_+^n

2.) M is T_2 and ...

Give an example of a topological space which satisfies (1), but is not T_2 .

Answer: Friday's Lecture.

M is a closed manifold if M is a compact manifold without boundary.

Wild knot:

Alexander horned sphere: see handout

To avoid such pathologies, we will work in the differentiable (C^{∞}) or piecewise linear (PL) category.

Examples of n-manifolds:

 $D^{n} = B^{n} = \{\mathbf{x} \in R^{n} \mid ||x|| \le 1\}$ $S^{n} = \{\mathbf{x} \in R^{n+1} \mid ||x|| = 1\} = \partial B^{n+1}$ $P^{n} = S^{n}/(\mathbf{x} \sim -\mathbf{x})$ $T^{n} = S^{1} \times S^{1} \times \dots \times S^{1}$

Forming new manifolds from old manifolds:

If M is an m-manifold and N is an n-manifold, then $M\times N$ is a (m+n)-manifold.

If M is an m-manifold, then ∂M is an (m-1)-manifold.

Suppose M and N are n-manifolds and f: a component of $\partial M \to$ a component of ∂N is a homeomorphism, then $M \cup_f N = M \cup N/(x \sim f(x))$

In particular, $M \# N = (M - B^n) \cup_i (N - B^n)$ where $i : S^{n-1} \to S^{n-1}$.

$$F_g = \#T^2 = (S^2 - \bigcup_{i=1}^{2g} D^2) \cup (\bigcup_{i=1}^{g} A^2)$$
 where $A^2 = \text{annulus}$
 $N_g = \#P^2 = (S^2 - \bigcup_{i=1}^{g} D^2) \cup (\bigcup_{i=1}^{g} V^2)$ where $V^2 = \text{mobius band}$

Euler characteristic = $\chi(M)$ = vertices - edges + faces - ... = $\sum_{i=0}^{\infty} (-1)^i \alpha_i(M)$ where $\alpha_i(M)$ = number of *i* cells. = $\sum_{i=0}^{\infty} (-1)^i \beta_i(M)$ where $\beta_i(M) = dim H_i(M)$

 $\chi(M_1 \cup_F M_2) = \chi(M_1) + \chi(M_2) - \chi(F)$

 $\chi(S^{2n-1}) = 0. \qquad \qquad \chi(S^{2n}) = 2. \qquad \qquad \chi(D^n) = 1.$

If S is a surface (compact connected 2-manifold) consisting of disjoint disks with bands attached, then $\chi(S) = \#$ of disks - # of bands.

 $\begin{array}{ll} \chi(T^2) = 0. & \chi(T^2 \# T^2) = -2, & \chi(F_g) = 2 - 2g \\ \chi(P^2) = 1. & \chi(P^2 \# P^2) = 0, & \chi(N_g) = 2 - g \end{array}$

Casson: "For three-dimensional topology, intuitive understanding is much more important than technical details."