A handle body is a 3-manifold homeomorphic to a connected sum of solid tori.

A Heegard splitting (of genus g) of a 3 -manifold M consists of a surface $F=\#_{1}^{g} T^{2}$ which separates M into two handlebodies. I.e. $M=V_{1} \cup_{f} V_{2}$ where V_{i} are handlebodies of genus g.

Every closed orientable 3-manifold has a Heegard splitting (use triangulation and let V_{1} be thickened 1-skeleton and V_{2} corresponds to the dual triangulation).

If F is an orientable surface in orientable 3-manifold M, then F has a collar neighborhood $F \times I \subset M . F$ has two sides. Can push F (or portion of F) in one direction.
M is prime if every separating sphere bounds a ball.
M is irreducible if every sphere bounds a ball. M irreducible iff M prime or $M \cong S^{2} \times S^{1}$.

A disjoint union of 2 -spheres, S, is independent if no component of $M-S$ is homeomorphic to a punctured sphere $\left(S^{3}-\right.$ disjoint union of balls).
F is properly embedded in M if $F \cap \partial M=\partial F$.
Two surfaces F_{1} and F_{2} are parallel in M if they are disjoint and $M-\left(F_{1} \cup F_{2}\right)$ has a component X of the form $\bar{X}=F_{1} \times I$ and $\partial \bar{X}=F_{1} \cup F_{2}$.

A compressing disk for surface F in M^{3} is a disk $D \subset M$ such that $D \cap F=\partial D$ and ∂D does not bound a disk in $F(\partial D$ is essential in F).

Defn: A surface $F^{2} \subset M^{3}$ without S^{2} or D^{2} components is incompressible if for each disk $D \subset M$ with $D \cap F=\partial D$, there exists a disk $D^{\prime} \subset F$ with $\partial D=\partial D^{\prime}$

Lemma: A closed surface F in a closed 3 -manifold with triangulation T can be isotoped so that F is transverse to all simplices of T and for all 3 -simplices τ, each component of $F \cap \partial \tau$ is of the form:

Defn: F is a normal surface with respect to T if
1.) F is transverse to all simplices of T.
2.) For all 3-simplices τ, each component of $F \cap \partial \tau$ is of the form:
3.) Each component of $F \cap \tau$ is a disk.

Lemma 3.5: (1.) If F is a disjoint union of independent 2spheres then F can be taken to be normal.
(2.) If F is a closed incompressible surface in a closed irreducible 3-manifold, then F can be taken to be normal.

Thm 3.6 (Haken) Let M be a compact irreducible 3-manifold. If S is a closed incompressible surface in M and no two components of S are parallel, then S has a finite number of components.

