Suppose d(t) = 40t represents miles traveled after t hours.

Average velocity is _____

Instantaneous velocity at $t = t_0$ is _____

Suppose $d(t) = t^2$ represents miles traveled after t hours.

Instantaneous velocity at t = 0 is _____

Suppose $d(t) = t^2$ represents miles traveled after t hours.

t_0	change in time	change in distance	average velocity
	btwn $t = 2$ and $t = t_0$	btwn $t = 2$ and $t = t_0$	btwn $t = 2$ and $t = t_0$
4	4 - 2	$4^2 - 2^2$	$\frac{4^2 - 2^2}{4 - 2} = 6$
3	3 - 2	$3^2 - 2^2$	$\frac{\frac{4-2}{3}}{\frac{3^2-2^2}{3-2}} = 5$
2.5	2.5 - 2	$(2.5)^2 - 2^2$	$\frac{(2.5)^2 - 2^2}{2.5 - 2} = 4.5$
2.1	2.1 - 2	$(2.1)^2 - 2^2$	$\frac{(2.1)^2 - 2^2}{2.1 - 2} = 4.1$
1.9	1.9 - 2	$(1.9)^2 - 2^2$	$\frac{(1.9)^2 - 2^2}{1.9 - 2} = 3.9$
1.5	1.5 - 2	$(1.5)^2 - 2^2$	$\frac{(1.5)^2 - 2^2}{1.5 - 2} = 3.5$
1	1 - 2	$1^2 - 2^2$	$\frac{1^2 - 2^2}{1 - 2} = 3$

Instantaneous velocity at t = 2 is _____

SLOPE OF SECANT LINE = AVERAGE VELOCITY SLOPE OF TANGENT LINE = INSTANTANEOUS VELOCITY in general, SLOPE = RATE OF CHANGE SLOPE OF SECANT LINE = AVERAGE RATE OF CHANGE SLOPE OF TANGENT LINE = INSTANTANEOUS RATE OF CHANGE