Section 2.3

Theorem: If $f(x) \leq g(x)$ near a (except possibly at a) and if $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

Section 2.4

Informal Defn: $\lim_{x \to a} f(x) = L$ if

x close to a (except possibly at a) implies f(x) is close to L.

Squeeze theorem: If $f(x) \leq g(x) \leq h(x)$ near a (except possibly at a) and if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} h(x) = L$, then $\lim_{x\to a} g(x) = L$ Formal Defn: $lim_{x\to a}f(x) = L$ if

For all $\epsilon > 0$, there exists $\delta > 0$ such that

 $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$.

Example: $g(x) = x \sin \frac{1}{x}$

 $-|x| \le x \sin \frac{1}{x} \le |x|$ $\lim_{x \to 0} \left(-|x| \right) = 0 \quad \lim_{x \to 0} \left(|x| \right) = 0$

$$v = 0 \quad |x| = 0, \quad v = 0 \quad |x|$$

Hence, $\lim_{x\to 0} \left(x\sin\frac{1}{x}\right) = 0$

Formal Defn: $lim_{x\to a}f(x) = L$ if

For all $\epsilon > 0$, there exists $\delta > 0$ such that

 $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$.

Proof:

Let $\epsilon > 0$. Choose $\delta = _$. Note $\delta = _ > 0$.

Suppose $0 < |x - a| < \delta$.

Claim: $|f(x) - L| < \epsilon$.

Defn: $\lim_{x\to a} f(x) = L$ if for all $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$

Show $lim_{x\to 1}2 =$

Defn: $\lim_{x\to a} f(x) = L$ if for all $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$

Show $lim_{x\to 4}2x + 3 =$

Defn: $\lim_{x \to a^-} f(x) = L$ if

x close to a and x < aimplies f(x) is close to L.

Defn: $\lim_{x \to a^+} f(x) = L$ if

x close to a and x > aimplies f(x) is close to L. Defn: $\lim_{x \to a} f(x) = \infty$ if

x close to a (except possibly at a) implies f(x) is large. Section 2.5

Defn: f is continuous at a if $\lim_{x\to a} f(x) = f(a)$ (i.e., if $\lim_{x\to a} f(x) = f(\lim_{x\to a} x)$ Examples:

Defn: $\lim_{x\to a} f(x) = -\infty$ if

x close to a (except possibly at a) implies f(x) is negative and |f(x)| is large.

Ex: Polynomial, rational, root, trigonometric, inverse trigonometric, exponential, logarithmic functions are continuous functions.

Read left and right continuity

If f, g continuous at $a, c \in \mathcal{R}$, then f + g, fg, cf, f/g (if $g(a) \neq 0$) are continuous.

If g continuous at a and f continuous at g(a), then $f \circ g$ continuous at a.

Ex: $\lim_{x \to 0} \frac{x^2 - e^{x^3}}{\cos(x)} =$

Intermediate value theorem: Suppose f continuous on [a, b], $f(a) \neq f(b)$ and n is between f(a) and f(b), then there exists $c \in (a, b)$ such that f(c) = N.

Example: Show that $x^2 - 7x + 1$ has a root between 0 and 1. Section 2.3: To find vertical asymptotes, find all $a \in \mathcal{R}$ such that $\lim_{x \to a^{-}} f(x) = \pm \infty$ and/or $\lim_{x \to a^{+}} f(x) = \pm \infty$

Ex: $f(x) = \frac{1}{(x+2)(x-3)^2}$

Section 2.6: Horizontal asymptotes/limits at infinity

To find horizontal asymptotes: calculate $\lim_{x\to+\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$

IF $\lim_{x\to+\infty} f(x) = L$ where L is a finite real number, then y = L is a horizontal asymptote.

IF $\lim_{x\to\infty} f(x) = K$ where K is a finite real number, then y = K is a horizontal asymptote.

Ex:
$$f(x) = \frac{2x^3 - x^2 + 1}{8x^3 + x + 3}$$

 $\lim_{x \to +\infty} \frac{2x^3 - x^2 + 1}{8x^3 + x + 3} =$

Ex:
$$f(x) = \frac{x^2 + 1}{2x^5 + x^2 - 3}$$

 $\lim_{x \to +\infty} \frac{x^2 + 1}{2x^5 + x^2 - 3} =$

Similarly,
$$\lim_{x \to -\infty} \frac{x^2 + 1}{2x^5 + x^2 - 3} =$$

Horizontal asymptote(s):

Ex:
$$f(x) = \frac{2x^5 + x^2 - 3}{x^2 + 1}$$

$$\lim_{x \to +\infty} \frac{2x^5 + x^2 - 3}{x^2 + 1} =$$

Similarly,
$$\lim_{x \to -\infty} \frac{2x^3 - x^2 + 1}{8x^3 + x + 3} =$$

Horizontal asymptote(s):

Also,
$$\lim_{x \to -\infty} \frac{2x^5 + x^2 - 3}{x^2 + 1} =$$

Horizontal asymptote(s):

Ex:
$$f(x) = \frac{2x}{\sqrt{x^2+1}}$$

 $\lim_{x \to +\infty} \frac{2x}{\sqrt{x^2+1}} =$

Ex:
$$f(x) = x^2 - x^3$$

 $lim_{x \to +\infty} x^2 - x^3 =$

$$\lim_{x \to -\infty} x^2 - x^3 =$$

$$\lim_{x \to -\infty} \frac{2x}{\sqrt{x^2+1}} =$$

Horizontal asymptote(s):

Ex: $f(x) = x^{\frac{2}{3}} - x$ $\lim_{x \to +\infty} x^{\frac{2}{3}} - x =$

$$\lim_{x \to -\infty} x^{\frac{2}{3}} - x =$$

Horizontal asymptote(s):

Horizontal asymptote(s):