## Section 2.3

Theorem: If $f(x) \leq g(x)$ near $a$ (except possibly at $a)$ and if $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Squeeze theorem:
If $f(x) \leq g(x) \leq h(x)$ near $a$ (except possibly at $a$ ) and if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} h(x)=L$, then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Example: $\quad g(x)=x \sin \frac{1}{x}$

$$
\begin{aligned}
& -|x| \leq x \sin \frac{1}{x} \leq|x| \\
& \lim _{x \rightarrow 0}(-|x|)=0, \lim _{x \rightarrow 0}(|x|)=0
\end{aligned}
$$

Hence, $\lim _{x \rightarrow 0}\left(x \sin \frac{1}{x}\right)=0$

Section 2.4
Informal Defn: $\lim _{x \rightarrow a} f(x)=L$ if $x$ close to $a$ (except possibly at $a$ ) implies $f(x)$ is close to $L$.

Formal Defn: $\lim _{x \rightarrow a} f(x)=L$ if
For all $\epsilon>0$, there exists $\delta>0$ such that $0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$.

Formal Defn: $\lim _{x \rightarrow a} f(x)=L$ if
For all $\epsilon>0$, there exists $\delta>0$ such that
$0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$.

## Proof:

Let $\epsilon>0$. Choose $\delta=$ $\qquad$ . Note $\delta=$ $\qquad$ $>0$.

Suppose $0<|x-a|<\delta$.
Claim: $|f(x)-L|<\epsilon$.

Defn: $\lim _{x \rightarrow a} f(x)=L$ if
for all $\epsilon>0$, there exists a $\delta>0$ such that $0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$

Show $\lim _{x \rightarrow 1} 2=$


Defn: $\lim _{x \rightarrow a} f(x)=L$ if
for all $\epsilon>0$, there exists a $\delta>0$ such that $0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$

Show $\lim _{x \rightarrow 4} 2 x+3=$


Defn: $\lim _{x \rightarrow a^{-}} f(x)=L$ if
$x$ close to $a$ and $x<a$ implies $f(x)$ is close to $L$.

Defn: $\lim _{x \rightarrow a^{+}} f(x)=L$ if
$x$ close to $a$ and $x>a$ implies $f(x)$ is close to $L$.

Section 2.5
Defn: $\lim _{x \rightarrow a} f(x)=\infty$ if
$x$ close to $a$ (except possibly at $a$ ) implies $f(x)$ is large.

Defn: $\lim _{x \rightarrow a} f(x)=-\infty$ if
$x$ close to $a$ (except possibly at $a$ ) implies $f(x)$ is negative and $|f(x)|$ is large.

Defn: $f$ is continuous at $a$ if $\lim _{x \rightarrow a} f(x)=f(a)$ (i.e., if $\lim _{x \rightarrow a} f(x)=f\left(\lim _{x \rightarrow a} x\right.$ )

Examples:

Ex: Polynomial, rational, root, trigonometric, inverse trigonometric, exponential, logarithmic functions are continuous functions.

Read left and right continuity

If $f, g$ continuous at $a, c \in \mathcal{R}$, then $f+g, f g$, $c f, f / g$ (if $g(a) \neq 0$ ) are continuous.

If $g$ continuous at $a$ and $f$ continuous at $g(a)$, then $f \circ g$ continuous at $a$.

Ex: $\lim _{x \rightarrow 0} \frac{x^{2}-e^{x^{3}}}{\cos (x)}=$
Intermediate value theorem: Suppose $f$ continuous on $[a, b], f(a) \neq f(b)$ and $n$ is between $f(a)$ and $f(b)$, then there exists $c \in(a, b)$ such that $f(c)=N$.

Example: Show that $x^{2}-7 x+1$ has a root between 0 and 1.

Section 2.3: To find vertical asymptotes, find all $a \in \mathcal{R}$ such that
$\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ and/or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$
Ex: $f(x)=\frac{1}{(x+2)(x-3)^{2}}$

## Section 2.6:

Horizontal asymptotes/limits at infinity
To find horizontal asymptotes:
calculate $\lim _{x \rightarrow+\infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$
IF $\lim _{x \rightarrow+\infty} f(x)=L$ where $L$ is a finite real number, then $y=L$ is a horizontal asymptote.

IF $\lim _{x \rightarrow-\infty} f(x)=K$ where $K$ is a finite real number, then $y=K$ is a horizontal asymptote.

Ex: $f(x)=\frac{2 x^{3}-x^{2}+1}{8 x^{3}+x+3}$
$\lim _{x \rightarrow+\infty} \frac{2 x^{3}-x^{2}+1}{8 x^{3}+x+3}=$

Ex: $f(x)=\frac{x^{2}+1}{2 x^{5}+x^{2}-3}$
$\lim _{x \rightarrow+\infty} \frac{x^{2}+1}{2 x^{5}+x^{2}-3}=$

Similarly, $\lim _{x \rightarrow-\infty} \frac{x^{2}+1}{2 x^{5}+x^{2}-3}=$ Horizontal asymptote(s):

Ex: $f(x)=\frac{2 x^{5}+x^{2}-3}{x^{2}+1}$
$\lim _{x \rightarrow+\infty} \frac{2 x^{5}+x^{2}-3}{x^{2}+1}=$

Similarly, $\lim _{x \rightarrow-\infty} \frac{2 x^{3}-x^{2}+1}{8 x^{3}+x+3}=$
Horizontal asymptote(s):

Also, $\lim _{x \rightarrow-\infty} \frac{2 x^{5}+x^{2}-3}{x^{2}+1}=$
Horizontal asymptote(s):

Ex: $f(x)=\frac{2 x}{\sqrt{x^{2}+1}}$
$\lim _{x \rightarrow+\infty} \frac{2 x}{\sqrt{x^{2}+1}}=$
$\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}+1}}=$

