Slope of secant line between $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$

$$
=\text { average rate of change }
$$

$$
\begin{aligned}
& =\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \\
& ==\frac{\Delta f(x)}{\Delta x}
\end{aligned}
$$

where $\Delta x=$ change in $x=x_{2}-x_{1}$
and $\Delta f(x)=$ change in $f(x)=f\left(x_{2}\right)-f\left(x_{1}\right)$
Slope of tangent line to f at $x_{1}=$ instantaneous rate of change

$$
\begin{gathered}
=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \\
=\lim _{x_{1}+h \rightarrow x_{1}} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{x_{1}+h-x_{1}} \\
=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}
\end{gathered}
$$

Definition $f^{\prime}(a)=$ slope of tangent line to f at $a=$ $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.

If $f(x)=2 x-4$, then $f^{\prime}(8)=$
If $g(x)=3$, then $g^{\prime}(1)=$
If $h(x)=|x|$, then $h^{\prime}(5)=$

$$
\text { and } h^{\prime}(-5)=
$$

Definition: Given f, then define the function f^{\prime} (the derivative of f) as follows:
$f^{\prime}(x)=$ slope of tangent line to f at $x=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
x is in the domain of f^{\prime} if x is in the domain of f and the above limit exists.

If $f(x)=2 x-4$, then $f^{\prime}(x)=$
If $g(x)=3$, then $g^{\prime}(x)=$
If $h(x)=|x|$, then $h^{\prime}(x)=$

Suppose $f(x)=-2 x+12$ represents the distance traveled from home in miles after x hours. Find the average velocity between $x=1$ and $x=3$. What are the units?

Find the instantaneous velocity at $x=1$: What are the units?

Suppose $f(x)=-2 x+12$ represents the cost of stock after x days from purchase. Find the average change in the cost of the stock between $x=1$ and $x=3$. What are the units?

Find the instantaneous change in the cost of the stock at $x=1$: What are the units?

Suppose $f(x)=8$ represents the distance traveled from home in miles after x hours. Find the average velocity between $x=1$ and $x=3$. What are the units?

Find the instantaneous velocity at $x=1$: What are the units?

Suppose $f(x)=8$ represents the cost of stock after x days from purchase. Find the average change in the cost of the stock between $x=1$ and $x=3$. What are the units?

Find the instantaneous change in the cost of the stock at $x=1$: What are the units?

Suppose $f(x)=\frac{x+3}{4 x-5}$ represents the distance traveled from home in miles after x hours. Find the average velocity between $x=1$ and $x=3$. What are the units?

Find the instantaneous velocity at $x=1$: What are the units?

Suppose $f(x)=\frac{x+3}{4 x-5}$ represents the cost of stock after x days from purchase. Find the average change in the cost of the stock between $x=1$ and $x=3$. What are the units?

Find the instantaneous change in the cost of the stock at $x=1$: What are the units?

HW

2.7) $1,2,3,9,13,15,17,27$
2.8) $3,4,5,7,15,25,29,33,35,36$
2.9) $4,7,9,21,27,29,37,38$
3.1) $3,23,29,31,45$
and

