## Section 4.2

Rolle's theorem: Suppose
1.) $f$ continuous on $[a, b]$
2.) $f$ differentiable on $(a, b)$
3.) $f(a)=f(b)$.

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$

Mean Value Theorem: Suppose
1.) $f$ continuous on $[a, b]$
2.) $f$ differentiable on $(a, b)$

Then there exists $c \in(a, b)$ Ruth that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Proof: Let $h(x)=f(x)-$ secant line.
$h(x)=$

## Applications of MVT (including Rolle's)

Ex 1: Show $x^{5}+3 x^{3}+2 x-4=0$ has exactly one real root.
Step 1: Show there exists a root (review IVT)

Step 2: Show there is at most one root.

Ex 2: Suppose $f(1)=2$ and $f^{\prime}(x) \leq 3$. How large can $f(4)$ be?

Ex 3: If $f^{\prime}(x)=0$ for all $x \in(a, b)$, then $f(x)=c$ for some constant $c$.

Ex 4: If $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in(a, b)$, then $f(x)=g(x)+c$ for some constant $c$.

Section 4.4: Indeterminate forms:
$" \infty-\infty "$

$$
\begin{array}{ccc}
" \infty \cdot 0 " & " \frac{\infty}{\infty} " & " \frac{0}{0} " \\
" \infty^{0} " & " 00 \% & \\
\hline 1 \infty "
\end{array}
$$

L'Hospital's Rule: Suppose $f^{\prime}$ and $g^{\prime}$ exist, $g^{\prime}(x) \neq 0$ near $a$ except possibly at $a$ where $a \in \mathcal{R} \cup\{+\infty,-\infty\}$ and if either
1.) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$
or
2.) $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$
and if $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Ex 1) $\lim _{x \rightarrow+\infty} \frac{-2 x^{2}+3}{5 x^{2}+4 x}$
Old method: $\lim _{x \rightarrow+\infty} \frac{-2 x^{2}+3}{5 x^{2}+4 x}=\lim _{x \rightarrow+\infty} \frac{x^{2}\left(-2+\frac{3}{x^{2}}\right)}{x^{2}\left(5+\frac{4}{x}\right)}=$
New method:
$\lim _{x \rightarrow+\infty} \frac{-2 x^{2}+3}{5 x^{2}+4 x}$
$\lim _{x \rightarrow 1} \frac{1-x+\ln (x)}{x^{3}-3 x+2}$

