Increasing/Decreasing Test:
If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then f is increasing on (a, b)
If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then f is decreasing on (a, b)
First derivative test:
Suppose c is a critical number of a continuous function f, then

Defn: f is concave down if the graph of f

lies below the tangent lines to f.
Defn: f is concave up if the graph of f
lies above the tangent lines to f.
Concavity Test:
If $f^{\prime \prime}(x)>0$ for all $x \in(a, b)$, then f is concave upward on (a, b). If $f^{\prime \prime}(x)<0$ for all $x \in(a, b)$, then f is concave down on (a, b).
Defn: The point $\left(x_{0}, y_{0}\right)$ is an inflection point if f is continuous at x_{0} and if the concavity changes at x_{0}

Second derivative test: If $f^{\prime \prime}$ continuous at c, then
If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.

If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

Converses are not true:
Increasing/Decreasing Test
If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then f is increasing on (a, b)
f increasing on (a, b) does not imply $f^{\prime}(x)>0$ for all $x \in(a, b)$.
Ex:

If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then f is decreasing on (a, b)
f decreasing on (a, b) does not imply $f^{\prime}(x)<0$ for all $x \in(a, b)$.
Ex:

Concavity Test:
If $f^{\prime \prime}(x)>0$ for all $x \in(a, b)$, then f is concave upward on (a, b). f concave upward on (a, b) does not imply $f^{\prime \prime}(x)>0$ for all $x \in(a, b)$.
Ex:

If $f^{\prime \prime}(x)<0$ for all $x \in(a, b)$, then f is concave down on (a, b).
f concave downward on (a, b) does not imply $f^{\prime \prime}(x)<0$ for all $x \in(a, b)$.
Ex:

If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$, second derivative test gives no info.

