Find the following for $f(x)=x^{3}-3 x^{2}+33$ (if they exist; if they don't exist, state so). Use this information to graph f.

Note $f^{\prime}(x)=3 x^{2}-6 x, f^{\prime \prime}(x)=6 x-6, f(-2)=13, f(-3)=-21$
[1.5] 1a.) critical numbers: \qquad
[1.5] 1b.) local maximum(s) occur at $x=$ \qquad
[1.5] 1c.) local minimum(s) occur at $x=$ \qquad
[1.5] 1d.) The global maximum of f on the interval $[0,5]$ is \qquad and occurs at $x=$ \qquad
[1.5] 1e.) The global minimum of f on the interval $[0,5]$ is \qquad and occurs at $x=$ \qquad
[1.5] 1f.) Inflection point(s) occur at $x=$ \qquad
[1.5] 1g.) f increasing on the intervals \qquad
[1.5] 1h.) f decreasing on the intervals \qquad
[1.5] 1i.) f is concave up on the intervals \qquad
[1.5] 1 j.$) f$ is concave down on the intervals \qquad
[1.5] 1k.) Equation(s) of vertical asymptote(s) \qquad
[4] 11.) Equation(s) of horizontal and/or slant asymptote(s) \qquad [4.5] 1m.) Graph f

$f(x)=x^{3}-3 x^{2}+33$
$f^{\prime}(x)=3 x^{2}-6 x=3 x(x-2)=0$ or DNE, critical points: $x=0,2$
Check increasing/decreasing between critical points ($\mathrm{f}^{\prime}(\mathrm{x})=0$, DNE) and singleton points not in domain (where function could change between increasing/decreasing).
$f^{\prime \prime}(x)=6 x-6=0$ or DNE, so possible inflection point: $x=1$
Check concave up/down between possible inflection points ($\mathrm{f}^{\prime \prime}(\mathrm{x})=0$, DNE) and singleton points not in domain (where function could change between concave up/down).

