Find the following for $f(x) = x^3 - 3x^2 + 33$ (if they exist; if they exist) so). Use this information to graph f .	lon't exist, state
Note $f'(x) = 3x^2 - 6x$, $f''(x) = 6x - 6$, $f(-2) = 13$, $f(-3) = -21$	
[1.5] 1a.) critical numbers:	
[1.5] 1b.) local maximum(s) occur at $x =$	-
[1.5] 1c.) local minimum(s) occur at $x =$	
[1.5] 1d.) The global maximum of f on the interval $[0, 5]$ is $x = $	and occurs at
[1.5] 1e.) The global minimum of f on the interval $[0, 5]$ is $x = $	and occurs at
[1.5] 1f.) Inflection point(s) occur at $x =$	
[1.5] 1g.) f increasing on the intervals	
[1.5] 1h.) f decreasing on the intervals	
[1.5] 1i.) f is concave up on the intervals	
[1.5] 1j.) f is concave down on the intervals	_
[1.5] 1k.) Equation(s) of vertical asymptote(s)	
[4] 11.) Equation(s) of horizontal and/or slant asymptote(s)	
[4.5] 1m.) Graph f	

$$f(x) = x^3 - 3x^2 + 33$$

 $f'(x) = 3x^2 - 6x = 3x(x - 2) = 0$ or DNE, critical points: $x = 0, 2$

Check increasing/decreasing between critical points (f'(x) = 0, DNE) and singleton points not in domain (where function could change between increasing/decreasing).

f''(x) = 6x - 6 = 0 or DNE, so possible inflection point: x = 1

Check concave up/down between possible inflection points (f''(x) = 0, DNE) and singleton points not in domain (where function could change between concave up/down).