Find the following for $f(x)=\frac{x^{2}+3 x}{x-1}=\frac{x(x+3)}{x-1}$ (if they exist; if they don't exist, state so). Use this information to graph f.

Note $f^{\prime}(x)=\frac{(x-3)(x+1)}{(x-1)^{2}}, f^{\prime \prime}(x)=\frac{8}{(x-1)^{3}}$
[1.5] 1a.) critical numbers: \qquad
[1.5] 1b.) local maximum(s) occur at $x=$ \qquad
[1.5] 1c.) local minimum(s) occur at $x=$ \qquad
[1.5] 1d.) The global maximum of f on the interval $[0,5]$ is \qquad and occurs at $x=$ \qquad
[1.5] 1e.) The global minimum of f on the interval $[0,5]$ is \qquad and occurs at $x=$ \qquad
[1.5] 1f.) Inflection point(s) occur at $x=$ \qquad
[1.5] 1 g .) f increasing on the intervals \qquad
[1.5] 1h.) f decreasing on the intervals \qquad
[1.5] 1i.) f is concave up on the intervals \qquad
[1.5] 1 j.$) f$ is concave down on the intervals \qquad
[1.5] 1k.) Equation(s) of vertical asymptote(s) \qquad
[4] 11.) Equation(s) of horizontal and/or slant asymptote(s) \qquad [4.5] 1m.) Graph f

