Exam 1 Feb 22, 2007
Math 25 Calculus I Either circle your answers or place on answer line.
Find the following derivatives (you do not need to simplify):
[14] 1.) $\frac{d}{d x}\left[\frac{x^{2}+3 \sqrt{x}+x}{2 x^{4}-5}\right]$

Answer 1.)
[14] 2.) $\frac{d}{d x}\left[2 x e^{x}+3 \sqrt{x^{5}}-\frac{1}{x}\right]$

Answer 2.)
3.) Calculate the appropriate limits in order to find the equations of all vertical and horizontal asymptotes for $f(x)=\frac{\sqrt{x^{2}+1}}{2(x-3)}$. Show ALL steps.
[12] horizontal asymptotes)
[10] 4a.) Find the derivative of $f(x)=2 x+3$ by using the definition of derivative.

$$
f^{\prime}(x)=
$$

\qquad
[3] 4b.) Find the equation of the tangent line to the curve $f(x)=2 x+3$ when $x=1$.
[10] 5.) Express the given quantity as a single logarithm.:

$$
a \ln (x)+b \ln (y)-c \ln (z)-d \ln (1)=
$$

\qquad
[7] 6.) Sketch the graph of a function with the following properties:
$\lim _{x \rightarrow 2^{+}} f(x)=+\infty$,
$\lim _{x \rightarrow+\infty} f(x)=0$,
$\lim _{x \rightarrow-\infty} f(x)=5$
$f^{\prime}(-3)=1, f^{\prime}(0)=0, f^{\prime}(1)=-4$

			6							
			5							
			4							
			3							
			3							
			2							
			1							
						2	3	45	45	6

7.) If a ball is thrown vertically upward with a velocity of $16 \mathrm{ft} / \mathrm{sec}$, then its height (in feet) is given by $s(t)=16 t-16 t^{2}$.
[7] 7a.) What is the maximum height reached by the ball?
[3] 7b.) Find a point $\left(t_{0}, s\left(t_{0}\right)\right)$ at which the slope of the tangent line to the curve $s(t)=16 t-16 t^{2}$ is equal to $0:\left(t_{0}, s\left(t_{0}\right)\right)=$
[10] Choose either problem 8 or 9. You may do both problems for up to 4 points extra credit.
8.) Let $f: R \rightarrow R, f(x)=(x-3)^{2}$.

8a.) Is $f 1: 1$? \qquad . If f is not $1: 1$, prove it.
b.) Is f onto? \qquad . If f is not onto, prove it.

9a.) State the Intermediate Value Theorem.

9b.) Use the Intermediate Value Theorem to show that $\sqrt{x}-\frac{5}{2}=0$ has a root between 4 and 9 .

