Exam 2 April 5, 2005 Math 25 Calculus I SHOW ALL WORK Either circle your answers or place on answer line.

[10] 1a.) Use a linear approximation (or differentials) to estimate ln(0.97)

Answer 1a.)

- [2] 1b.) Is the answer to 1a an over-estimate or an under-estimate?
- [2] 1c.) For the problem in 1a,

dx =_____, dy =_____, $\Delta x =$ _____, $\Delta y =$ _____.

- [2] 2a.) The linearization of f(x) = sin(x) at x = 0 is ______
- [2] 2b.) The linearization of f(x) = cos(x) at x = 0 is ______
- [2] 2c.) The linearization of f(x) = sin(x) at $x = \frac{\pi}{2}$ is ______
- [2] 2d.) The linearization of f(x) = 2x + 1 at x = 0 is ______
- [2] 2e.) Use the above linearizations to estimate the following:

$$sin(0.1) \sim ___, \qquad sin(\frac{3}{2}) \sim ___$$

[10] 3.) Recall that radioactive substances decay at a rate proportional to the remaining mass. The half-life of polonium-218 is 3 minutes. Suppose a sample originally has a mass of 400g. SIMPLIFY your answers to the following:

a.) A formula for the mass remaining after t minutes is _____

b.) The mass remaining after 6 minutes is _____

c.) When is the mass reduced to 10g?

[15] 4.) Find the derivative of $x \ln(\sqrt{3sin(x^2) - e^x + 1}))$. Circle your answer. You do NOT need to simplify. [15] 5.) A plan flies horizontally at an altitude of 10km and passes directly over a tracking telescope on the ground. When the angle of elevation is $\pi/3$ (with respect to the tracking telescope, after it has passed over the tracking telescope), this angle is decreasing at a rate of $\pi/4$ rad/min. How fast is the plane traveling at that time. (Hint: you can use a right triangle).

6.) Find the following for $f(x) = x^3 - 8x^2 + 16x = x(x-4)^2$ (if they exist; if they don't exist state so). Use this information to graph f .	,
Note $f'(x) = 3x^2 - 16x + 16 = (x - 4)(3x - 4)$ and $f''(x) = 6x - 16$	
[1.5] 6a.) critical numbers:	
[1.5] 6b.) local maximum(s) occur at $x =$	
[1.5] 6c.) local minimum(s) occur at $x =$	
[1.5] 6d.) The global maximum of f on the interval $[0, 5]$ is and occurs at	
x =	
[1.5] 6e.) The global minimum of f on the interval $[0, 5]$ is and occurs at	
x =	
[1.5] 6f.) Inflection point(s) occur at $x =$	
[1.5] 6g.) f increasing on the intervals	
[1.5] 6h.) f decreasing on the intervals	
[1.5] 6i.) f is concave up on the intervals	
[1.5] 6j.) f is concave down on the intervals	
[5] 6k.) Graph f	

[16] 7.) Circle T for true and F for false. If the statement is false, give a counter-example.
7a.) If f'(x) > 0 on an interval, then f is increasing on that interval. T
Counter-example: <u>None</u>.
7b.) If f is increasing on an interval, then f'(x) > 0 on that interval. F
Counter-example: <u>f(x) = x³ is an increasing function on (-∞, ∞), but f'(0) = 0</u>.

7c.) If f'(c) = 0, then f has a local maximum or local minimum at c. T F Counter-example:

7d.) If f has a local maximum or local minimum at c, then f'(c) = 0. T F Counter-example:

7e.) If f has a local maximum or local minimum at c and if f'(c) exists, then f'(c) = 0. T F

Counter-example:

7f.) Suppose f'' is continuous near x and f'(c) = 0. If f''(c) > 0, then f has a local minimum at c. T F

Counter-example:

7g.) Suppose f'' is continuous near x and f'(c) = 0. If f has a local minimum at c, then f''(c) > 0.

Counter-example:

7h.) If f is continuous on (a, b), then f attains an absolute maximum value f(c) at some number c in (a, b). T

Counter-example: