SHOW ALL WORK

Math 25 Calculus I Either circle your answers or place on answer line.
[10] 1a.) Use a linear approximation (or differentials) to estimate $\ln (0.97)$

Answer 1a.)
[2] 1b.) Is the answer to 1a an over-estimate or an under-estimate?
[2] 1c.) For the problem in 1a,
$d x=$ \qquad , $d y=$ \qquad , $\Delta x=$ \qquad , $\Delta y=$ \qquad .
[2] 2a.) The linearization of $f(x)=\sin (x)$ at $x=0$ is \qquad
[2] 2b.) The linearization of $f(x)=\cos (x)$ at $x=0$ is \qquad
[2] 2c.) The linearization of $f(x)=\sin (x)$ at $x=\frac{\pi}{2}$ is \qquad
[2] 2d.) The linearization of $f(x)=2 x+1$ at $x=0$ is \qquad
[2] 2e.) Use the above linearizations to estimate the following:
\qquad $\sin (0.1) \sim$,

$$
\sin \left(\frac{3}{2}\right) \sim
$$

[10] 3.) Recall that radioactive substances decay at a rate proportional to the remaining mass. The half-life of polonium- 218 is 3 minutes. Suppose a sample originally has a mass of 400 g . SIMPLIFY your answers to the following:
a.) A formula for the mass remaining after t minutes is \qquad
b.) The mass remaining after 6 minutes is \qquad
c.) When is the mass reduced to 10 g ? \qquad
[15] 4.) Find the derivative of $\left.x \ln \left(\sqrt{3 \sin \left(x^{2}\right)-e^{x}+1}\right)\right)$.
Circle your answer. You do NOT need to simplify.
[15] 5.) A plan flies horizontally at an altitude of 10 km and passes directly over a tracking telescope on the ground. When the angle of elevation is $\pi / 3$ (with respect to the tracking telescope, after it has passed over the tracking telescope), this angle is decreasing at a rate of $\pi / 4 \mathrm{rad} / \mathrm{min}$. How fast is the plane traveling at that time. (Hint: you can use a right triangle).
6.) Find the following for $f(x)=x^{3}-8 x^{2}+16 x=x(x-4)^{2}$ (if they exist; if they don't exist, state so). Use this information to graph f.

Note $f^{\prime}(x)=3 x^{2}-16 x+16=(x-4)(3 x-4)$ and $f^{\prime \prime}(x)=6 x-16$
[1.5] 6a.) critical numbers: \qquad
[1.5] 6b.) local maximum(s) occur at $x=$ \qquad
[1.5] 6c.) local minimum(s) occur at $x=$ \qquad
[1.5] 6d.) The global maximum of f on the interval $[0,5]$ is \qquad and occurs at $x=$ \qquad
[1.5] 6e.) The global minimum of f on the interval $[0,5]$ is \qquad and occurs at $x=$ \qquad
[1.5] 6f.) Inflection point(s) occur at $x=$ \qquad
[1.5] 6g.) f increasing on the intervals \qquad
[1.5] 6h.) f decreasing on the intervals \qquad
[1.5] 6i.) f is concave up on the intervals \qquad
[1.5] 6 j.$) f$ is concave down on the intervals \qquad
[5] 6k.) Graph f

[16] 7.) Circle T for true and F for false. If the statement is false, give a counter-example. 7a.) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.

Counter-example: None.
7b.) If f is increasing on an interval, then $f^{\prime}(x)>0$ on that interval.
Counter-example: $f(x)=x^{3}$ is an increasing function on $(-\infty, \infty)$, but $f^{\prime}(0)=0$.
7c.) If $f^{\prime}(c)=0$, then f has a local maximum or local minimum at c. T

Counter-example:

7d.) If f has a local maximum or local minimum at c, then $f^{\prime}(c)=0$. T F Counter-example:

7e.) If f has a local maximum or local minimum at c and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Counter-example:

7f.) Suppose $f^{\prime \prime}$ is continuous near x and $f^{\prime}(c)=0$. If $f^{\prime \prime}(c)>0$, then f has a local minimum at c.

T
F
Counter-example:

7g.) Suppose $f^{\prime \prime}$ is continuous near x and $f^{\prime}(c)=0$. If f has a local minimum at c, then $f^{\prime \prime}(c)>0$.

Counter-example:

7h.) If f is continuous on (a, b), then f attains an absolute maximum value $f(c)$ at some number c in (a, b). T

Counter-example:

