Exam 2 March 31, 2011
Math 25 Calculus I

SHOW ALL WORK
Either circle your answers or place on answer line.
[10] 1a.) Use a linear approximation (or differentials) to estimate $\ln (0.97)$
Let $f(x)=\ln (x)$. Note 0.97 is close to 1 and $f(1)=\ln (1)=0$
$f^{\prime}(x)=\frac{1}{x}$. Hence the slope of the tangent line to f at $x=1$ is $\frac{d y}{d x}=f^{\prime}(1)=1$.
Since $\Delta x=d x=0.97-1=-0.03, d y=f^{\prime}(1) d x=1(-0.03)=-0.03$.
Thus $\ln (0.97)=f(1)+\Delta y=0+\Delta y \sim d y=-0.03$
Alternate method: Since $f(1)=0$ and $f^{\prime}(1)=1$, the equation of the tangent line to $f(x)=$ $\ln (x)$ at $x=1$ is $y=x-1$. Thus the tangent line $L(x)=x-1$ is the linear approximation to $f(x)=\ln (x)$ near $x=1$. Since 0.97 is close to $1, f(x) \sim L(x)=0.97-1=-0.3$.

Sidenote: In this case, the answer is a good approximation $(\ln (0.97)=-0.0304592 \ldots)$, but whether or not a tangent line is a good approximation of a function near the point of tangency depends on the function.

Answer 1a.) -0.03
[2] 1b.) Is the answer to 1a an over-estimate or an under-estimate? over - estimate
$f^{\prime}(x)=x^{-1}, f^{\prime \prime}(x)=-x^{-2}<0$. Hence f is concave down and the answer is an over-estimate.
[2] 1c.) For the problem in 1a,
$d x=\underline{-0.03}, d y=\underline{-0.03}, \Delta x=\underline{-0.03}, \Delta y=\underline{\ln (0.97)}$.
[2] 2a.) The linearization of $f(x)=\sin (x)$ at $x=0$ is $y=x$
[2] 2b.) The linearization of $f(x)=\cos (x)$ at $x=0$ is $\underline{y=1}$
[2] 2c.) The linearization of $f(x)=\sin (x)$ at $x=\frac{\pi}{2}$ is $\underline{y=1}$
[2] 2d.) The linearization of $f(x)=2 x+1$ at $x=0$ is $y=2 x+1$
[2] 2e.) Use the above linearizations to estimate the following:

$$
\sin (0.1) \sim \underline{0.1}, \quad \sin \left(\frac{3}{2}\right) \sim \underline{1}
$$

[10] 3.) Recall that radioactive substances decay at a rate proportional to the remaining mass. The half-life of polonium- 218 is 3 minutes. Suppose a sample originally has a mass of 400 g . SIMPLIFY your answers to the following:
a.) A formula for the mass remaining after t minutes is $400\left(2^{-t / 3}\right)$
b.) The mass remaining after 6 minutes is \qquad
c.) When is the mass reduced to $10 g$? $\log _{2}(64000)$

Answer:
b.) If half life $=3$ minutes and if $m(0)=400$, then $m(3)=200$ and $m(6)=100$
a.) radioactive substances decay at a rate proportional to the remaining mass: $\frac{d m}{d t}=k m$

Note $m(t)=m(0) e^{k t}$ is a solution to $\frac{d m}{d t}=k m$
From ch 5: $\int \frac{d m}{m}=\int k d t$. hence $\ln |m|=k t+C$. Thus $|m|=e^{k t+C}=e^{k t} e^{C}$. Since mass is always positive, we obtain $m(t)=m(0) e^{k t}$
$400 e^{3 t}=200$. Thus $e^{3 k}=\frac{1}{2} . k=-\frac{\ln (2)}{3}$
$m(t)=400 e^{-\frac{\ln (2)}{3} t}=400 e^{\ln (2)^{\frac{-t}{3}}}=400\left(2^{-t / 3}\right)$
b.) $m(6)=400\left(2^{-6 / 3}\right)=400\left(2^{-2}\right)=400 / 4=100$
c.) $10=400\left(2^{-t / 3}\right)$

$$
\frac{1}{40}=2^{-t / 3}
$$

Taking the recipricol of both sides: $40=2^{t / 3}$
$\log _{2}(40)=t / 3$
$t=3 \log _{2}(40)=\log _{2}\left(40^{3}\right)=\log _{2}(64000)$
\qquad
[15] 4.) Find the derivative of $x \ln \left(\sqrt{3 \sin \left(x^{2}\right)-e^{x}+1}\right)$.
Circle your answer. You do NOT need to simplify.
$\left[x \cos \left(\ln \left(\sqrt{3 e^{x}-x^{2}+1}\right)\right)\right]^{\prime}=$
$\ln \left(\sqrt{3 \sin \left(x^{2}\right)-e^{x}+1}\right)+x\left(\frac{1}{\sqrt{3 \sin \left(x^{2}\right)-e^{x}+1}}\right)\left(\frac{1}{2}\right)\left(3 \sin \left(x^{2}\right)-e^{x}+1\right)^{-\frac{1}{2}}\left(6 x \cos \left(x^{2}\right)-e^{x}\right)$
[15] 5.) A plan flies horizontally at an altitude of 10 km and passes directly over a tracking telescope on the ground. When the angle of elevation is $\pi / 3$ (with respect to the tracking telescope, after it has passed over the tracking telescope), this angle is decreasing at a rate of $\pi / 4 \mathrm{rad} / \mathrm{min}$. How fast is the plane traveling at that time. (Hint: you can use a right triangle).
$\tan (\theta)=\frac{10}{x}$. Hence $\frac{\sin \theta}{\cos \theta}=\frac{10}{x}$. Note when $\theta=\pi / 3, \theta^{\prime}=-\pi / 4$
$\operatorname{method} 1: x \sin (\theta)=10 \cos (\theta)$
$x^{\prime} \sin (\theta)+x \cos (\theta) \theta^{\prime}=-10 \sin (\theta) \theta^{\prime}$
when $\theta=\pi / 3, \theta^{\prime}=-\pi / 4 . \quad \tan (\pi / 3)=\frac{10}{x}$ implies $x=\frac{10}{\tan (\pi / 3)}=\frac{10}{\sqrt{3}}$.
$x^{\prime} \sin (\pi / 3)+\frac{10}{\sqrt{3}} \cos (\pi / 3)\left(-\frac{\pi}{4}\right)=-10 \sin (\pi / 3)\left(-\frac{\pi}{4}\right)$.
$x^{\prime} \frac{\sqrt{3}}{2}+\frac{10}{\sqrt{3}}\left(\frac{1}{2}\right)\left(-\frac{\pi}{4}\right)=-10\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{\pi}{4}\right)$.
$x^{\prime} \sqrt{3}+\frac{10}{\sqrt{3}}\left(-\frac{\pi}{4}\right)=-10 \sqrt{3}\left(-\frac{\pi}{4}\right)$.
$x^{\prime} \sqrt{3}=-10 \sqrt{3}\left(-\frac{\pi}{4}\right)-\frac{10}{\sqrt{3}}\left(-\frac{\pi}{4}\right) .=10 \sqrt{3}\left(\frac{\pi}{4}\right)+\frac{10}{\sqrt{3}}\left(\frac{\pi}{4}\right)$.
$x^{\prime}=10\left(\frac{\pi}{4}\right)+\frac{10}{3}\left(\frac{\pi}{4}\right)=\frac{40}{3}\left(\frac{\pi}{4}\right)=\frac{10 \pi}{3}$.
method 2: $x=10 \frac{\cos (\theta)}{\sin (\theta)}$
$x^{\prime}=10\left(\frac{-\sin (\theta) \theta^{\prime} \sin (\theta)-\cos (\theta) \cos (\theta) \theta^{\prime}}{\sin ^{2} \theta}\right)=-10 \theta^{\prime}\left(\frac{\sin ^{2}(\theta)+\cos ^{2}(\theta)}{\sin ^{2} \theta}\right)=\frac{-10 \theta^{\prime}}{\sin ^{2} \theta}$
when $\theta=\pi / 3, \theta^{\prime}=-\pi / 4, x^{\prime}=\frac{10 \pi / 4}{\sin ^{2}(\pi / 3)}=\frac{10 \pi / 4}{\left(\frac{\sqrt{3}}{2}\right)^{2}}=\frac{10 \pi / 4}{3 / 4}=\frac{10 \pi}{3}$
\qquad $\frac{10 \pi}{3} \mathrm{~km} / \mathrm{min}$
6.) Find the following for $f(x)=x^{3}-8 x^{2}+16 x=x(x-4)^{2}$ (if they exist; if they don't exist, state so). Use this information to graph f.

Note $f^{\prime}(x)=3 x^{2}-16 x+16=(x-4)(3 x-4)$ and $f^{\prime \prime}(x)=6 x-16$
[1.5] 6a.) critical numbers: $\underline{\frac{4}{3}, 4}$
[1.5] 6b.) local maximum(s) occur at $x=\underline{\frac{4}{3}}$
[1.5] 6c.) local minimum(s) occur at $x=\underline{4}$
[1.5] 6d.) The global maximum of f on the interval $[0,5]$ is $\frac{256}{27}$ and occurs at

$$
x=\frac{4}{\underline{3}}
$$

[1.5] 6e.) The global minimum of f on the interval $[0,5]$ is $\underline{0}$ and occurs at

$$
x=\underline{0,4}
$$

[1.5] 6f.) Inflection point(s) occur at $x=\frac{8}{3}$
[1.5] 6g.) f increasing on the intervals $\left(-\infty, \frac{4}{3}\right) \cup(4, \infty)$
[1.5] 6h.) f decreasing on the intervals $\underline{\left(\frac{4}{3}, 4\right)}$
[1.5] 6i.) f is concave up on the intervals $\left(\underline{\frac{8}{3}}, \infty\right)$
[1.5] 6 j.$) f$ is concave down on the intervals $\left(-\infty, \frac{8}{3}\right)$
[5] 6k.) Graph f

[16] 7.) Circle T for true and F for false. If the statement is false, give a counter-example. 7a.) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.

Counter-example: None.

7b.) If f is increasing on an interval, then $f^{\prime}(x)>0$ on that interval.
Counter-example: $f(x)=x^{3}$ is an increasing function on $(-\infty, \infty)$, but $f^{\prime}(0)=0$.

7c.) If $f^{\prime}(c)=0$, then f has a local maximum or local minimum at c.
Counter-example: If $f(x)=x^{3}$, then $f^{\prime}(0)=0$, but $f(0)$ is neither a local maximum nor a local minimum

7d.) If f has a local maximum or local minimum at c, then $f^{\prime}(c)=0$.
Counter-example: $f(x)=|x|$ has a local minimum at $x=0$, but $f^{\prime}(0)$ does not exist.

7e.) If f has a local maximum or local minimum at c and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
T
Counter-example: None

7f.) Suppose $f^{\prime \prime}$ is continuous near x and $f^{\prime}(c)=0$. If $f^{\prime \prime}(c)>0$, then f has a local minimum at c.

T
Counter-example: None

7 g .) Suppose $f^{\prime \prime}$ is continuous near x and $f^{\prime}(c)=0$. If f has a local minimum at c, then $f^{\prime \prime}(c)>0$.

Counter-example: $f(x)=x^{4}$ has a local minimum at $x=0$, but $f^{\prime \prime}(0)=0$.

7h.) If f is continuous on (a, b), then f attains an absolute maximum value $f(c)$ at some number c in (a, b).

F

Counter-example: $f:(0,1) \rightarrow R, f(x)=x$ does not have an absolute maximum value.

