Exam 1 March 3, 2011 22M:025 Calculus I SHOW ALL WORK Either circle your answers or place on answer line.

- [5] 1.) State the limit definition of the derivative: f'(x) =
- [7] 2.) Choose one of the following (clearly indicate your choice: 2A or 2B).
- **2A**.) Prove: If c is a constant and f is differentiable at x, then (cf)'(x) = c(f'(x))
- **2B**i.) Define: $f: X \to Y$ is 1:1 iff
- ii.) Define: $f: X \to Y$ is NOT 1:1 iff
- iii.) Prove that $f: R \to R$, $f(x) = \sqrt{x^2}$ is NOT 1:1.

[10] 3.) Suppose $f(x) = e^x$. Evaluate the following (FILL in the blank) and graph:

a.) Graph
$$y = f(x+2) =$$

c.) Graph
$$y = 2f(x-1) - 3 =$$

d.) Graph $y = f^{-1}(x) = _$

[10] 4.) Simplify and express the given quantity as a single logarithm:

$$[ln(e^{2} - 1) - ln(e - 1)] \cdot [ln(e^{2})ln(e) - ln(1)] = _$$

5.) Let
$$f(x) = \frac{\sqrt{3x^6 - 1}}{x^3 - x^2 - x + 1} = \frac{\sqrt{3x^6 - 1}}{(x - 1)^2(x + 1)}$$

[5] 5a.) The domain of f is ______

[5] 5b.) Show all steps: $\lim_{x \to -\infty} f(x) =$ _____

[5] 5c.) $lim_{x \to +\infty} f(x) =$ _____

[4] 5d.) Does y = f(x) have any horizontal asymptotes? _____. If so, state the equation(s) of all horizontal asymptote(s):

5cont.) Recall $f(x) = \frac{\sqrt{3x^6 - 1}}{x^3 - x^2 - x + 1} = \frac{\sqrt{3x^6 - 1}}{(x - 1)^2(x + 1)}$ [5] 5e.) $\lim_{x \to 1} f(x) =$ _____

[5] 5f.) $lim_{x\to -1}f(x) =$ _____

[5] 5g.) $\lim_{x \to -1^{-}} f(x) =$ _____

[4] 5h.) Does y = f(x) have any vertical asymptotes? _____. If so, state the equation(s) of all vertical asymptote(s):

[10] 6.) If $f(x) = \frac{x^2 - 1}{e^x sinx}$, then f'(x) =______

[10] 7.) Find equation of tangent line to f(x) = sin(4x - 3) + 2 at x = 1

Answer:

[10] 8.) If $3xy = \sqrt{y} + x$, then $\frac{dy}{dx} =$ ______