Exam 1 March 3, 2011
$22 \mathrm{M}: 025$ Calculus I

SHOW ALL WORK
Either circle your answers or place on answer line.
[5] 1.) State the limit definition of the derivative: $f^{\prime}(x)=$
[7] 2.) Choose one of the following (clearly indicate your choice: 2 A or 2B).
2A.) Prove: If c is a constant and f is differentiable at x, then $(c f)^{\prime}(x)=c\left(f^{\prime}(x)\right)$
2Bi.) Define: $f: X \rightarrow Y$ is 1:1 iff
ii.) Define: $f: X \rightarrow Y$ is NOT 1:1 iff
iii.) Prove that $f: R \rightarrow R, f(x)=\sqrt{x^{2}}$ is NOT 1:1.
[10] 3.) Suppose $f(x)=e^{x}$. Evaluate the following (FILL in the blank) and graph:
a.) Graph $y=f(x+2)=$

\qquad
b.) Graph $y=f(-x)=$ \qquad

c.) Graph $y=2 f(x-1)-3=$ \qquad d.) Graph $y=f^{-1}(x)=$ \qquad

[10] 4.) Simplify and express the given quantity as a single logarithm:

$$
\left[\ln \left(e^{2}-1\right)-\ln (e-1)\right] \cdot\left[\ln \left(e^{2}\right) \ln (e)-\ln (1)\right]=
$$

\qquad
5.) Let $f(x)=\frac{\sqrt{3 x^{6}-1}}{x^{3}-x^{2}-x+1}=\frac{\sqrt{3 x^{6}-1}}{(x-1)^{2}(x+1)}$
[5] 5a.) The domain of f is
[5] 5b.) Show all steps: $\lim _{x \rightarrow-\infty} f(x)=$
[5] 5c.) $\lim _{x \rightarrow+\infty} f(x)=$
[4] 5d.) Does $y=f(x)$ have any horizontal asymptotes? \qquad . If so, state the equation(s) of all horizontal asymptote(s):

5cont.) Recall $f(x)=\frac{\sqrt{3 x^{6}-1}}{x^{3}-x^{2}-x+1}=\frac{\sqrt{3 x^{6}-1}}{(x-1)^{2}(x+1)}$
[5] 5e.) $\lim _{x \rightarrow 1} f(x)=$
[5] 5f.) $\lim _{x \rightarrow-1} f(x)=$ \qquad
[5] 5g.) $\lim _{x \rightarrow-1^{-}} f(x)=$ \qquad
[4] 5h.) Does $y=f(x)$ have any vertical asymptotes? \qquad . If so, state the equation(s) of all vertical asymptote(s):
[10] 6.) If $f(x)=\frac{x^{2}-1}{e^{x} \sin x}$, then $f^{\prime}(x)=$
[10] 7.) Find equation of tangent line to $f(x)=\sin (4 x-3)+2$ at $x=1$

Answer:
[10] 8.) If $3 x y=\sqrt{y}+x$, then $\frac{d y}{d x}=$

