Define: $f: X \rightarrow Y$ is 1:1 iff $\underline{f(x)=f(y) \text { implies } x=y}$
Define: $f: X \rightarrow Y$ is NOT 1:1 iff
$\underline{\text { there exists } x \neq y \text { such that } f(x)=f(y)}$
Prove that $f: R \rightarrow R, f(x)=x^{4}$ is NOT 1:1.

Define: $f: X \rightarrow Y$ is onto iff $\quad \underline{f(X)=Y}$.
Define: $f: X \rightarrow Y$ is NOT onto iff there exists $y \in Y$ s. t. there does not exist an $x \in X$ s. t. $\overline{f(x)=y}$
(i.e., y is not in the image of f).

Prove that $f: R \rightarrow R, f(x)=x^{4}$ is NOT onto.

State the Intermediate Value Theorem: Suppose f continuous on $[a, b], f(a) \neq f(b)$ and N is between $f(a)$ and $f(b)$, then there exists $c \in(a, b)$ such that $f(c)=N$.

Use the Intermediate Value Theorem to show that there exists $c \in[1,2]$ such that $c^{4}=2$.

Use the Intermediate Value Theorem to show that there exists $c \in[-2,-1]$ such that $c^{4}=2$.

Defn: $\lim _{x \rightarrow a} f(x)=L$ if
for all $\epsilon>0$, there exists a $\delta>0$ such that
$0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$
Prove $\lim _{x \rightarrow 2} 3 x=6$
Take $\epsilon>0$. Choose $\delta=\frac{\epsilon}{3}$
Suppose $0<|x-2|<\frac{\epsilon}{3}$
Claim $|3 x-6|<\epsilon$
Proof of claim: $|3 x-6|=3|x-2|<3\left(\frac{\epsilon}{3}\right)=\epsilon$
Define f continuous at a :

Define f differentiable at a :

Prove that if f differentiable at a, then f is continuous at a.
Hint: Show $\lim _{x \rightarrow a}[f(x)-f(a)]=0$

Thm: If f is differentiable at x and c is a constant, then $(c f)^{\prime}(x)=c\left(f^{\prime}(x)\right)$

