Define: $f: X \to Y$ is 1:1 iff f(x) = f(y) implies x = y

Define: $f : X \to Y$ is NOT 1:1 iff there exists $x \neq y$ such that f(x) = f(y)

Prove that $f: R \to R$, $f(x) = x^4$ is NOT 1:1.

Define: $f: X \to Y$ is onto iff f(X) = Y.

Define: $f : X \to Y$ is NOT onto iff there exists $y \in Y$ s. t. there does not exist an $x \in X$ s. t. $\overline{f(x) = y}$ (i.e., y is not in the image of f).

Prove that $f: R \to R$, $f(x) = x^4$ is NOT onto.

State the Intermediate Value Theorem: Suppose f continuous on [a, b], $f(a) \neq f(b)$ and N is between f(a) and f(b), then there exists $c \in (a, b)$ such that f(c) = N.

Use the Intermediate Value Theorem to show that there exists $c \in [1, 2]$ such that $c^4 = 2$.

Use the Intermediate Value Theorem to show that there exists $c \in [-2, -1]$ such that $c^4 = 2$.

Defn: $\lim_{x\to a} f(x) = L$ if for all $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$

Prove $lim_{x\to 2}3x = 6$

Take $\epsilon > 0$. Choose $\delta = \frac{\epsilon}{3}$

Suppose $0 < |x-2| < \frac{\epsilon}{3}$

Claim $|3x - 6| < \epsilon$

Proof of claim: $|3x-6| = 3|x-2| < 3(\frac{\epsilon}{3}) = \epsilon$

Define f continuous at a:

Define f differentiable at a:

Prove that if f differentiable at a, then f is continuous at a.

Hint: Show $\lim_{x \to a} [f(x) - f(a)] = 0$

Thm: If f is differentiable at x and c is a constant, then (cf)'(x) = c(f'(x))