Potential exam questions:
i.) Define: $f: X \rightarrow Y$ is $1: 1 \mathrm{iff}$
ii.) Define: $f: X \rightarrow Y$ is NOT 1:1 iff
iii.) Prove that $f: R \rightarrow R, f(x)=$ \qquad is NOT 1:1.
i.) State the Intermediate Value Theorem:
ii.) See HW problems

Use the limit definition of the derivative to find the derivative of $f(x)=$ \qquad

Prove: If c is a constant and f is differentiable at x, then $(c f)^{\prime}(x)=c\left(f^{\prime}(x)\right)$

I will choose two of the above for the following exam 1 question:
\#.) Choose one of the following (clearly indicate your choice).
\#A.)
\#B.)

Suppose $2 x^{2} y-3 y^{2}=4$. Find $y^{\prime \prime}$
1.) First find y^{\prime} :

Easiest method is to use implicit differentiation. Take derivative (with respect to x) of both sides.

$$
\begin{aligned}
& \frac{d}{d x}\left(2 x^{2} y-3 y^{2}\right)=\frac{d}{d x}(4) \\
& 4 x y+2 x^{2} y^{\prime}-6 y y^{\prime}=0
\end{aligned}
$$

Solve for y^{\prime} (note this step is easy as one can factor y^{\prime} from some terms):

$$
\begin{gathered}
y^{\prime}\left(2 x^{2}-6 y\right)=-4 x y \\
y^{\prime}=\frac{-4 x y}{2 x^{2}-6 y}=\frac{-2(2 x y)}{-2\left(3 y-x^{2}\right)}=\frac{2 x y}{3 y-x^{2}}
\end{gathered}
$$

Hence $y^{\prime}=\frac{2 x y}{3 y-x^{2}}$
2.) To find $y^{\prime \prime}$, take derivative of y^{\prime} :
$y^{\prime \prime}=\left(\frac{2 x y}{3 y-x^{2}}\right)^{\prime}=\frac{\left(2 x y^{\prime}+2 y\right)\left(3 y-x^{2}\right)-2 x y\left(3 y y^{\prime}-2 x\right)}{\left(3 y-x^{2}\right)^{2}}$
Since $y^{\prime}=\frac{2 x y}{3 y-x^{2}}$,
$y^{\prime \prime}=\frac{\left(2 x\left(\frac{2 x y}{3 y-x^{2}}\right)+2 y\right)\left(3 y-x^{2}\right)-2 x y\left(3 y\left(\frac{2 x y}{3 y-x^{2}}\right)-2 x\right)}{\left(3 y-x^{2}\right)^{2}}$

