2.3: Modeling with differential equations.

Ex.: $F=m a=m v^{\prime}$
$a=$ acceleration $=v^{\prime}=x^{\prime \prime}$
$v=$ velocity $=x^{\prime}$
$x=$ position
$m=$ mass $\quad m g=$ weight
Model 1: Falling ball near earth, neglect air resistance.
$F_{g}=$ Gravitational force $=-m g$
IF the positive direction points up.
Note in some examples in the book, the positive direction points down $\left(F_{g}=+m g\right)$ while in other examples in the book, the positive direction points up $\left(F_{g}=-m g\right)$
$m v^{\prime}=-m g$ implies $v^{\prime}=-g$. Thus $v=-g t+C$.
IVP: $v(0)=v_{0}$ implies $v_{0}=-g(0)+C$ implies $C=$ $v_{0}$. Thus $v=-g t+v_{0}$
$x^{\prime}=v=-g t+v_{0}$ implies $x=-\frac{1}{2} g t^{2}+v_{0} t+C$.
IVP: $x(0)=x_{0}$ implies $x_{0}=-\frac{1}{2} g(0)^{2}+v_{0}(0)+C$ implies $C=x_{0}$.

Thus $x=-\frac{1}{2} g t^{2}+v_{0} t+x_{0}$.

Note when ball reaches maximum height $v=0$

Model 2: Falling ball near earth, include air resistance.

Let $A(v)=$ the force due to air resistance.
$m v^{\prime}=F_{g}+R(v)=-m g+A(v)$
Model 3: Far from earth.
$F_{g}=-m g \frac{R^{2}}{(R+x)^{2}}$ where $R=$ radius of the earth.
If $x$ is small, $\frac{R^{2}}{(R+x)^{2}} \sim 1$ and thus $F_{g}=-m g$ when close to earth.

For large $x, m v^{\prime}=-m g \frac{R^{2}}{(R+x)^{2}}$ where $R$ constant.
$\frac{d v}{d t}=-m g \frac{R^{2}}{(R+x)^{2}}$ with 3 variables: $v, t, x$
To eliminate one variable: $\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}$
Note this trick can also be used to simplify some problems.

