3.8: Mechanical and Electrical Vibrations

Trig background:
$\cos (y \mp x)=\cos (x \mp y)=\cos (x) \cos (y) \pm \sin (x) \sin (y)$
Let $A=R \cos (\delta), B=R \sin (\delta)$ in
$A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)$
$=R \cos (\delta) \cos \left(\omega_{0} t\right)+R \sin (\delta) \sin \left(\omega_{0} t\right)$
$=R \cos \left(\omega_{0} t-\delta\right)$
Amplitude $=R$
frequency $=\omega_{0}$ (measured in radians per unit time).
period $=\frac{2 \pi}{\omega_{0}}$
phase $($ displacement $)=\delta$

Mechanical Vibrations:

$$
\begin{gathered}
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{\text {external }}, \quad m, \gamma, k \geq 0 \\
m g-k L=0, \quad F_{v i s c o u s}(t)=\gamma u^{\prime}(t)
\end{gathered}
$$

$m=$ mass,
$k=$ spring force proportionality constant,
$\gamma=$ damping force proportionality constant $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}$

Electrical Vibrations:

$$
\begin{aligned}
& L \frac{d I(t)}{d t}+R I(t)+\frac{1}{C} Q(t)=E(t), \quad L, R, C \geq 0 \text { and } I=\frac{d Q}{d t} \\
& L=\text { inductance (henrys) } \\
& R=\text { resistance (ohms) } \\
& C=\text { capacitance (farads) } \\
& Q(t)=\text { charge at time } t \text { (coulombs) } \\
& I(t)=\text { current at time } t \text { (amperes) } \\
& E(t)=\text { impressed voltage (volts) } .
\end{aligned}
$$

1 volt $=1 \mathrm{ohm} \cdot 1$ ampere $=1$ coulomb $/ 1$ farad $=$
1 henry 1 amperes/ 1 second

$$
\begin{aligned}
& m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{\text {external }}, \quad m, \gamma, k \geq 0 \\
& r_{1}, r_{2}=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}
\end{aligned} \begin{array}{r}
\gamma^{2}-4 k m>0: u(t)=A e^{r_{1} t}+B e^{r_{2} t}+\psi(t)
\end{array} \begin{array}{r}
\begin{array}{r}
\gamma^{2}-4 k m=0: u(t)=(A+B t) e^{r_{1} t}+\psi(t)
\end{array} \\
\begin{array}{r}
\gamma^{2}-4 k m<0: u(t)=e^{-\frac{\gamma t}{2 m}}(A \cos \mu t+B \sin \mu t)+\psi(t) \\
\\
=e^{-\frac{\gamma t}{2 m}} R \cos (\mu t-\delta)+\psi(t) \\
\text { where } A=R \cos (\delta), B=R \sin (\delta)
\end{array} \\
\begin{aligned}
\mu=\text { quasi frequency, } \frac{2 \pi}{\mu}=\text { quasi period }
\end{aligned}
\end{array}
$$

Note if $\gamma=0$, then
Critical damping: $\gamma=2 \sqrt{\mathrm{~km}}$
Overdamped: $\gamma>2 \sqrt{k m}$

Suppose a mass weighs 64 lbs stretches a spring 4 ft . If there is no damping and the spring is stretched an additional foot and set in motion with an upward velocity of $\sqrt{8} \mathrm{ft} / \mathrm{sec}$, find the equation of motion of the mass.

Weight $=m g: m=\frac{\text { weight }}{g}=\frac{64}{32}=2$
$m g-k L=0$ implies $k=\frac{m g}{L}=\frac{64}{4}=16$
$m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{\text {external }}$
$\left[\gamma^{2}-4 k m<0: u(t)=e^{-\frac{\gamma t}{2 m}}(A \cos \mu t+B \sin \mu t)\right.$
Hence $u(t)=A \cos \mu t+B \sin \mu t$ since $\gamma=0]$.
$2 u^{\prime \prime}(t)+16 u(t)=0$
$u^{\prime \prime}(t)+8 u(t)=0$
$u(0)=1, u^{\prime}(0)=-\sqrt{8}$
$r^{2}+8=0 \rightarrow r^{2}=-8 \rightarrow r=\sqrt{-8}=i \sqrt{8}=0+i \sqrt{8}$

