The LaPlace Transform is a method to change a differential equation to a linear equation.

Example: Solve $y^{\prime \prime}+3 y^{\prime}+4 y=0, y(0)=5, y^{\prime}(0)=6$ 1.) Take the LaPlace Transform of both sides of the equation:
$\mathcal{L}\left(y^{\prime \prime}+3 y^{\prime}+4 y\right)=\mathcal{L}(0)$
2.) Use the fact that the LaPlace Transform is linear:
$\mathcal{L}\left(y^{\prime \prime}\right)+3 \mathcal{L}\left(y^{\prime}\right)+4 \mathcal{L}(y)=0$
3.) Use thm to change this equation into an algebraic equation:
$s^{2} \mathcal{L}(y)-s y(0)-y^{\prime}(0)+3[s \mathcal{L}(y)-y(0)]+4 \mathcal{L}(y)=0$
3.5) Substitute in the initial values:
$s^{2} \mathcal{L}(y)-5 s-6+3[s \mathcal{L}(y)-5]+4 \mathcal{L}(y)=0$
4.) Solve the algebraic equation for $\mathcal{L}(y)$
$s^{2} \mathcal{L}(y)-5 s-6+3 s \mathcal{L}(y)-15+4 \mathcal{L}(y)=0$
$\left[s^{2}+3 s+4\right] \mathcal{L}(y)=5 s+21$
$\mathcal{L}(y)=\frac{5 s+21}{s^{2}+3 s+4}$
Some algebra implies $\mathcal{L}(y)=\frac{5 s+21}{s^{2}+3 s+4}$
5.) Solve for y by taking the inverse LaPlace transform of both sides (use a table):
$\mathcal{L}^{-1}(\mathcal{L}(y))=\mathcal{L}^{-1}\left(\frac{5 s+21}{s^{2}+3 s+4}\right)$
$y=\mathcal{L}^{-1}\left(\frac{5 s+21}{s^{2}+3 s+4}\right)$

Find the inverse LaPlace transform of $\frac{5 s+21}{s^{2}+3 s+4}$
Look at the denominator first to determine if it is of the form $s^{2} \pm a^{2}$ or $(s-a)^{n+1}$ or $(s-a)^{2}+b^{2}$ OR if you should factor and use partial fractions
$s^{2}+3 s+4: b^{2}-4 a c=3^{2}-4(1)(4)=9-16<0$
Hence $s^{2}+3 s+4$ does not factor over the reals. Hence to avoid complex numbers, we won't factor it.
$s^{2}+3 s+4$ is not an $s^{2}-a^{2}$ or an $s^{2}+a^{2}$ or an $(s-a)^{2}$, so it must be an $(s-a)^{2}+b^{2}$.

Hence we will complete the square:
$s^{2}+3 s+\ldots-\ldots+4=(s+\ldots)^{2}-\ldots+4$
Hence $\frac{5 s+21}{s^{2}+3 s+4}=\frac{5 s+21}{\left(s+\frac{3}{2}\right)^{2}+\frac{7}{4}}$

Must now consider the numerator. We need it to look like $s-a=s+\frac{3}{2}$ or $b=\sqrt{\frac{7}{4}}$ in order to use $\mathcal{L}^{-1}\left(\frac{s-a}{(s-a)^{2}+b^{2}}\right)=e^{a t} \cos b t$ and/or $\mathcal{L}^{-1}\left(\frac{b}{(s-a)^{2}+b^{2}}\right)=e^{a t} \sin b t$
$5 s+21=5\left(s+\frac{3}{2}\right)-\frac{15}{2}+21=5\left(s+\frac{3}{2}\right)-\frac{27}{2}$
$=5\left(s+\frac{3}{2}\right)-\left[\frac{27}{2} \sqrt{\frac{4}{7}}\right] \sqrt{\frac{7}{4}}=5\left(s+\frac{3}{2}\right)-\left[\frac{27}{\sqrt{7}}\right] \sqrt{\frac{7}{4}}$
Hence $\frac{5 s+21}{s^{2}+3 s+4}=\frac{5\left(s+\frac{3}{2}\right)-\left[\frac{27}{\sqrt{7}}\right] \sqrt{\frac{7}{4}}}{\left(s+\frac{3}{2}\right)^{2}+\frac{7}{4}}$

$$
=5\left[\frac{s+\frac{3}{2}}{\left(s+\frac{3}{2}\right)^{2}+\frac{7}{4}}\right]-\frac{27}{\sqrt{7}}\left[\frac{\sqrt{\frac{7}{4}}}{\left(s+\frac{3}{2}\right)^{2}+\frac{7}{4}}\right]
$$

Thus $\mathcal{L}^{-1}\left(\frac{5 s+21}{s^{2}+3 s+4}\right)=\mathcal{L}^{-1}\left(5\left[\frac{s+\frac{3}{2}}{\left(s+\frac{3}{2}\right)^{2}+\frac{7}{4}}\right]-\frac{27}{\sqrt{7}}\left[\frac{\sqrt{\frac{7}{4}}}{\left(s+\frac{3}{2}\right)^{2}+\frac{7}{4}}\right]\right)$

$$
\begin{aligned}
& =5 \mathcal{L}^{-1}\left(\frac{s+\frac{3}{2}}{\left(s+\frac{3}{2}\right)^{2}+\frac{7}{4}}\right)-\frac{27}{\sqrt{7}} \mathcal{L}^{-1}\left(\frac{\sqrt{\frac{7}{4}}}{\left(s+\frac{3}{2}\right)^{2}+\frac{7}{4}}\right) \\
& =5 e^{-\frac{3}{2} t} \cos \sqrt{\frac{7}{4}} t-\frac{27}{\sqrt{7}} e^{-\frac{3}{2} t} \sin \sqrt{\frac{7}{4}} t
\end{aligned}
$$

Hence $y(t)=5 e^{-\frac{3}{2} t} \cos \sqrt{\frac{7}{4}} t-\frac{27}{\sqrt{7}} e^{-\frac{3}{2} t} \sin \sqrt{\frac{7}{4}} t$.

