Math 34 Differential Equations Exam \#1
December 4, 2003
1.) A mass of 10 kg stretches a spring 3 m . The mass is acted on by an external force of $3 \sin 4 t$ The mass is pushed upward 1 m above its equilibrium position, and then set in motion in the upward direction with a velocity of $2 \mathrm{~m} / \mathrm{sec}$.
[10] 1a.) If there is no damping, formulate the initial value problem describing the motion of the mass.

Answer 1a.)
[5] 1b.) If the mass moves in a medium that imparts a viscous force of 5 N when the speed of the mass is $9 \mathrm{~m} / \mathrm{sec}$, formulate the initial value problem desribing the motion of the mass.

Answer 1b.) \qquad
2.) Circle T for True and F for False. In the first 4, assume $\mathcal{L}(f)$ and $\mathcal{L}(g)$ exist and c is a real number.
[2] 2a.) Suppose $\mathcal{L}(f)$ and $\mathcal{L}(g)$ exist. $\mathcal{L}(c f)=c \mathcal{L}(f)$

$$
\mathrm{T}
$$

[2] 2b.) Suppose $\mathcal{L}(f)$ and $\mathcal{L}(g)$ exist. $\mathcal{L}(f g)=\mathcal{L}(f) \mathcal{L}(g)$

$$
\mathrm{T}
$$

[2] 2c.) Suppose $\mathcal{L}(f)$ and $\mathcal{L}(g)$ exist. $\mathcal{L}^{-1}(c f)=c \mathcal{L}^{-1}(f)$
[2] 2d.) Suppose $\mathcal{L}(f)$ and $\mathcal{L}(g)$ exist. $\mathcal{L}^{-1}(f g)=\mathcal{L}^{-1}(f) \mathcal{L}^{-1}(g)$
[2] 2e.) The delta function is a function.
[30] 3.) Use the LaPlace transform to solve the given initial value problem.

$$
y^{\prime \prime}+2 y=\left\{\begin{array}{ll}
0 & t<2 \\
4 e^{3 t} & t \geq 2
\end{array}, \quad y(0)=8, \quad y^{\prime}(0)=0\right.
$$

$[4 \times 12=48] \quad$ 4.) Choose 4 of the following. Clearly indicate which problems you choose. You may do all the problems for possible partial credit.
A.) Use the definition and not the table to find the LaPlace transform of $f(t)=t$

Answer : \qquad
B.) Find the inverse LaPlace transform of $\frac{2 s+1}{s^{2}+4 s+20}$

Answer :
C.) Evaluate $t * t^{2}$.

Answer : \qquad
D.) Transform $4 u^{\prime \prime \prime}(t)+u^{\prime}(t)-2 u(t)=\sin (t)$ into a system of first order differential equations.

Answer \qquad
E.) The following True/False problems refer to the equation $m u^{\prime \prime}+\gamma u^{\prime}+k u=F_{0} \cos (\omega t)$. Circle T for true and F for false.
[3] Ei.) Suppose $c_{1} \cos (3 t)+c_{2} \sin 3 t$ is the solution to the homogeneous equation $m u^{\prime \prime}+\gamma u^{\prime}+$ $k u=0$, then resonance occurs if an external force of $F_{0} \cos (\omega t)=4 \cos (3 t)$ is applied.
[3] Eii.) Suppose $c_{1} \cos (3 t)+c_{2} \sin 3 t$ is the solution to the homogeneous equation $m u^{\prime \prime}+$ $\gamma u^{\prime}+k u=0$, then resonance occurs if an external force of $F_{0} \cos (\omega t)=3 \cos (4 t)$ is applied.

T F
[1] Eiii.) Suppose $c_{1} e^{-3 t}+c_{2} t e^{-3 t}$ is the solution to the homogeneous equation $m u^{\prime \prime}+\gamma u^{\prime}+k u=$ 0 , then resonance occurs if an external force of $F_{0} \cos (\omega t)=4 \cos (3 t)$ is applied.

T F
[1] Eiv.) Suppose $c_{1} e^{-3 t}+c_{2} t e^{-3 t}$ is the solution to the homogeneous equation $m u^{\prime \prime}+\gamma u^{\prime}+k u=$ 0 , then resonance occurs if an external force of $F_{0} \cos (\omega t)=3 \cos (4 t)$ is applied.
[4] Ev.) If resonance does occur, then $\lim _{t \rightarrow \infty} u(t)=0$

