Math 34 Differential Equations Exam \#1
September 24, 2010
SHOW ALL WORK
[5] 1a.) Define: A function f is linear if

Circle T for True or F for False:
[3] 1b.) If $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are solutions to a second order homogeneous differential equation, then $c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution.
[3] 1c.) If $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are solutions to a second order linear homogeneous differential equation, then $c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution.
[3] 1d.) $\ln (t) y^{\prime \prime}-\frac{y^{\prime}}{t}+y \sqrt{t}=e^{t} \cos (t)$ is a second order linear differential equation.
[3] 1e.) If p, and g are continuous, then there exists a unique solution to

$$
y^{\prime}+p(t) y=g(t), y(0)=2
$$

[3] 1f.) A first order linear differential equation has a unique solution such that $y(0)=2$.

Choose 4 problems from problems 2-6. You may do all the problems for up to 4 pts extra credit. If you do not choose your best 4 problems, I will substitute your extra problem for your lowest scoring problem, but with a 3 point penalty (if it improves your grade).

Extra credit problem (choose 1 from problems 2-6):
[16] 2a.) Match the following differential equation to its direction field. Indicate all equilibrium solutions (if any) and state whether stable, unstable or semistable. If a differential equation has no equilibrium solutions, state so.
I.) $y^{\prime}=1-y$
II.) $y^{\prime}=-1+y$
III.) $y^{\prime}=y(y+2)$
IV.) $y^{\prime}=y^{2}(2-y)$
V.) $y^{\prime}=t+y$

B.)

[4] 2b.) Match the following differential equation initial value problem to its graph:
I.) $y^{\prime \prime}+y^{\prime}+49 y=0, y(0)=0, y^{\prime}(0)=5$
II.) $y^{\prime \prime}+y^{\prime}+49 y=0, y(0)=1, y^{\prime}(0)=5$
III.) $y^{\prime \prime}+49 y=0, y(0)=0, y^{\prime}(0)=5$
IV.) $y^{\prime \prime}+49 y=0, y(0)=1, y^{\prime}(0)=5$
A.)

B.)

C.)

D.)

3.) Solve the differential equation $t^{3} y^{\prime}+3 t^{2} y=\frac{\ln (e)}{t^{2}-4}$. Simplify your answer.
4.) Solve $\frac{y^{\prime \prime}}{y^{\prime}}-\frac{1}{y^{2}}=0, y(2)=1, y^{\prime}(2)=-1$

Answer:
5.) A mass of 10 kg stretches a spring 9.8 m . The mass is pushed upward, contracting the spring a distance of one meter and set in motion with an upward velocity of $4 \mathrm{~m} / \mathrm{sec}$. If the mass moves in a medium that imparts a viscous force of 100 N when the speed of the mass is $5 \mathrm{~m} / \mathrm{sec}$, find the equation of motion of the mass.
6.) Show that L : set of all twice differentiable functions \rightarrow set of all functions, $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$ is a linear function.

Hint: Calculate $L(r f+t g)$ where r, t are real numbers and f, g are twice differentiable functions.

If $y=\phi(t)$ is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=0$, then $L(\phi)=$ \qquad .

If $y=\psi(t)$ is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=0$, then $L(\psi)=$ \qquad .
$L\left(c_{1} \phi+c_{2} \psi\right)=$ \qquad .

Is $c_{1} \phi+c_{2} \psi$ a solution to $a f^{\prime \prime}+b f^{\prime}+c f=0$? \qquad .

