Math 34 Differential Equations Exam \#1
September 24, 2010
SHOW ALL WORK
[5] 1a.) Define: A function f is linear if
$f(a \mathbf{x}+b \mathbf{y})=a f(\mathbf{x})+b f(\mathbf{y})$ where a, b are scalars (or real numbers or complex numbers for this class).

Circle T for True or F for False:
[3] 1b.) If $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are solutions to a second order homogeneous differential equation, then $c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution.
[3] 1c.) If $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are solutions to a second order linear homogeneous differential equation, then $c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution.
[3] 1d.) $\ln (t) y^{\prime \prime}-\frac{y^{\prime}}{t}+y \sqrt{t}=e^{t} \cos (t)$ is a second order linear differential equation. T
[3] 1e.) If p, and g are continuous, then there exists a unique solution to

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t), y(0)=2 . \tag{T}
\end{equation*}
$$

[3] 1f.) A first order linear differential equation has a unique solution such that $y(0)=2$.

Choose 4 problems from problems 2-6. You may do all the problems for up to 4 pts extra credit. If you do not choose your best 4 problems, I will substitute your extra problem for your lowest scoring problem, but with a 3 point penalty (if it improves your grade).

Extra credit problem (choose 1 from problems 2-6):
[16] 2a.) Match the following differential equation to its direction field. Indicate all equilibrium solutions (if any) and state whether stable, unstable or semistable. If a differential equation has no equilibrium solutions, state so.

$$
\begin{aligned}
& \mathrm{E}=\mathrm{I} .) y^{\prime}=1-y \\
& \mathrm{D}=\mathrm{II} .) y^{\prime}=-1+y \\
& \mathrm{~A}=\mathrm{III} .) y^{\prime}=y(y+2) \\
& \mathrm{C}=\mathrm{IV} .) y^{\prime}=y^{2}(2-y) \\
& \mathrm{B}=\mathrm{V} .) y^{\prime}=t+y
\end{aligned}
$$

III = A.)
stable: $\mathrm{y}=-2$; unstable: $\mathrm{y}=0$

$$
\mathrm{V}=\mathrm{B} .)
$$

no equilibrium soln.

$$
\mathrm{IV}=\mathrm{C} .)
$$

$$
\mathrm{II}=\mathrm{D} .)
$$

unstable: $\mathrm{y}=1$

$$
\mathrm{I}=\mathrm{E} .)
$$

stable $\mathrm{y}=1$
[4] 2b.) Match the following differential equation initial value problem to its graph:
$\mathrm{C}=\mathrm{I}.) y^{\prime \prime}+y^{\prime}+49 y=0, y(0)=0, y^{\prime}(0)=5 . \quad r^{2}+r+49=0$ implies $r=a \pm b i$ General solution:
$\mathrm{D}=\mathrm{II}.) y^{\prime \prime}+y^{\prime}+49 y=0, y(0)=1, y^{\prime}(0)=5 \quad y=e^{a t}\left[c_{1} \cos (b t)+c_{2} \sin (b t)\right]$
Note a is negative
$\mathrm{B}=$ III. $) y^{\prime \prime}+49 y=0, y(0)=0, y^{\prime}(0)=5 \quad r^{2}+49=0$ implies $r= \pm 7 i$
(NOTE: no damping)
$\mathrm{A}=\mathrm{IV}.) y^{\prime \prime}+49 y=0, y(0)=1, y^{\prime}(0)=5$

General solution:

$$
y=c_{1} \cos (b t)+c_{2} \sin (b t)
$$

$\mathrm{IV}=\mathrm{A}$.

$\mathrm{III}=\mathrm{B}$.

$\mathrm{I}=\mathrm{C}$.

$\mathrm{II}=\mathrm{D}$.
3.) Solve the differential equation $t^{3} y^{\prime}+3 t^{2} y=\frac{\ln (e)}{t^{2}-4}$. Simplify your answer.

Note this is a first order LINEAR differential equation. Hence you can use an integrating factor in order to write the LHS as the derivative of a product.

Shortcut for this problem: Note the LHS is already the derivative of a product
$t^{3} y^{\prime}+3 t^{2} y=\frac{\ln (e)}{t^{2}-4}$.
$\left(t^{3} y\right)^{\prime}=\frac{1}{t^{2}-4}$
$\int\left(t^{3} y\right)^{\prime} d t=\int \frac{1}{t^{2}-4} d t$
$t^{3} y=\int \frac{1}{t^{2}-4} d t$
$\int \frac{1}{t^{2}-4} d t=\int\left[\frac{1}{4(t-2)}-\frac{1}{4(t+2)}\right] d t=\frac{1}{4} \ln |t-2|-\frac{1}{4} \ln |t+2|+C$
$=\frac{1}{4}(\ln |t-2|-\ln |t+2|)+C$
$=\frac{1}{4} \ln \left|\frac{t-2}{t+2}\right|+C$
Hence $t^{3} y=\frac{1}{4} \ln \left|\frac{t-2}{t+2}\right|+C$
Hence $y=\frac{1}{4 t^{3}} \ln \left|\frac{t-2}{t+2}\right|+C t^{-3}$
Note to integrate the RHS, we needed to use partial fractions:
$\frac{A}{t-2}+\frac{B}{t+2}=\frac{1}{t^{2}-4}$
$A(t+2)+B(t-2)=1$
$A t+2 A+B t-2 B=1$
$t(A+B)+2 A-2 B=1$
Thus $A+B=0,2 A-2 B=1$. Thus $A=\frac{1}{4}, B=-\frac{1}{4}$

Answer: $\quad y=\frac{\ln \left|\frac{t-2}{t+2}\right|+C}{4 t^{3}}$
4.) Solve $\frac{y^{\prime \prime}}{y^{\prime}}-\frac{1}{y^{2}}=0, y(2)=1, y^{\prime}(2)=-1$

Non-linear 2nd order differential equation. Hence you have only one option. Since you have no idea how to solve a non-linear 2 nd order differential equation, you must transform it into something you can solve: a first order differential equation.

Let $v=y^{\prime}, v^{\prime}=y^{\prime \prime}$
Hence $\frac{y^{\prime \prime}}{y^{\prime}}-\frac{1}{y^{2}}=0$ becomes $\frac{v^{\prime}}{v}-\frac{1}{y^{2}}=0$
Now we have a first order differential equation, but it involves 3 variables. Since $v^{\prime}=\frac{d v}{d t}$, our equation involves the variables v , t , and y . Fortunately we know how to eliminate one of these variables:

Recall $v=y^{\prime}=\frac{d y}{d t}$. Hence $v^{\prime}=\frac{d v}{d t}=\frac{d v}{d y} \frac{d y}{d t}=\frac{d v}{d y} v$.
Thus the equation $\frac{v^{\prime}}{v}-\frac{1}{y^{2}}=0$ becomes $\frac{\frac{d v}{d y} v}{v}-\frac{1}{y^{2}}=0$
We can simplify and separate variables.

$$
\begin{aligned}
& \frac{d v}{d y}=\frac{1}{y^{2}} \\
& \int d v=\int y^{-2} d y \\
& y^{\prime}=v=-y^{-1}+c_{1} \\
& \quad y(2)=1, \quad y^{\prime}(2)=-1: \text { when } t=2,-1=-1+c_{1} . \text { Thus } c_{1}=0 \\
& \frac{d y}{d t}=-y^{-1} \\
& \int y d y=\int-d t \\
& \frac{1}{2} y^{2}=-t+c_{2} \\
& y^{2}=-2 t+c_{2} \\
& y= \pm \sqrt{-2 t+c_{2}} \\
& \quad y(2)=1: 1= \pm \sqrt{-4+c_{2}} . \text { Thus } c_{2}=5 \quad \text { and } \quad y=\sqrt{-2 t+5}
\end{aligned}
$$

Answer: $\underline{y=\sqrt{-2 t+5}}$
5.) A mass of 10 kg stretches a spring 9.8 m . The mass is pushed upward, contracting the spring a distance of one meter and set in motion with an upward velocity of $4 \mathrm{~m} / \mathrm{sec}$. If the mass moves in a medium that imparts a viscous force of 100 N when the speed of the mass is $5 \mathrm{~m} / \mathrm{sec}$, find the equation of motion of the mass.

$$
\begin{gathered}
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{\text {external }}, \quad m, \gamma, k \geq 0 \\
m g-k L=0, \quad F_{\text {damping }}(t)=-\gamma u^{\prime}(t)
\end{gathered}
$$

$m=$ mass,
$k=$ spring force proportionality constant,
$\gamma=$ damping force proportionality constant
$m=10$,
$m g=k L: 98=k(9.8)$ implies $k=10$
$F_{\text {damping }}(t)=-\gamma u^{\prime}(t): 100=5 \gamma$. Thus $\gamma=20$
$10 u^{\prime \prime}(t)+20 u^{\prime}(t)+10 u(t)=0$
$u^{\prime \prime}(t)+2 u^{\prime}(t)+u(t)=0, u(0)=-1, u^{\prime}(0)=-4$
If $u=e^{r t}$, then $u^{\prime}=r e^{r t}$ and $u^{\prime \prime}=r^{2} e^{r t}$.
Hence $r^{2} e^{r t}+2 r e^{r t}+e^{r t}=0$
$r^{2}+2 r+1=0$
$(r+1)=0$. Hence $r=-1$
Hence general solution is $u(t)=c_{1} e^{-t}+c_{2} t e^{-t}$
$u(0)=-1, u^{\prime}(0)=-4$
$u(t)=c_{1} e^{-t}+c_{2} t e^{-t}$
$u^{\prime}(t)=-c_{1} e^{-t}+c_{2} e^{-t}-c_{2} t e^{-t}$
$-1=c_{1}$
$-4=-c_{1}+c_{2},-4=1+c_{2}$. Thus $c_{2}=-5$
$u(t)=-e^{-t}-5 t e^{-t}$

Answer: $\quad u(t)=-e^{-t}-5 t e^{-t}$
6.) Show that L : set of all twice differentiable functions \rightarrow set of all functions, $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$ is a linear function.

Hint: Calculate $L(r f+t g)$ where r, t are real numbers and f, g are twice differentiable functions.

$$
\begin{aligned}
L(r f+t g) & =a[r f+t g]^{\prime \prime}+b[r f+t g]^{\prime}+c[r f+t g] \\
& =a\left[r f^{\prime \prime}+t g^{\prime \prime}\right]+b\left[r f^{\prime}+t g^{\prime}\right]+c[r f+t g] \\
& =a r f^{\prime \prime}+a t g^{\prime \prime}+b r f^{\prime}+b t g^{\prime}+c r f+c t g \\
& =a r f^{\prime \prime}+b r f^{\prime}+c r f+a t g^{\prime \prime}+b t g^{\prime}+c t g \\
& =r\left[a f^{\prime \prime}+b f^{\prime}+c f\right]+t\left[a g^{\prime \prime}+b g^{\prime}+c g\right] \\
& =r L(f)+t L(g)
\end{aligned}
$$

Hence L is a linear function.

If $y=\phi(t)$ is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=0$, then $L(\phi)=\underline{0}$.
If $y=\psi(t)$ is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=0$, then $L(\psi)=\underline{0}$.
$L\left(c_{1} \phi+c_{2} \psi\right)=\underline{0}$.
Is $c_{1} \phi+c_{2} \psi$ a solution to $a f^{\prime \prime}+b f^{\prime}+c f=0$? yes

