Ch 6 theorems for exam 2 $\,$

Section 6.1

Thm 6.1.2:

Hint: Show $\int_0^\infty e^{st} f(t) dt$ exists by showing $\lim_{A\to\infty} \int_0^A e^{st} f(t) dt$ exists (ie converges to a finite number) for s > a.

Note $\int_0^\infty e^{st} f(t) dt = \int_0^M e^{st} f(t) dt + \int_M^\infty e^{st} f(t) dt$

Thm: The Laplace transform is a linear operator.

Hint: $\mathcal{L}(af(t) + bg(t)) = \dots$ OR [$\mathcal{L}(af(t)) = \dots$ and $\mathcal{L}(f(t) + g(t)) = \dots$]

Section 6.2

Thm 6.2.1:

Hint: use integration by parts and let dv = f'(t)

Cor 6.2.2': $\mathcal{L}(f''(t)) = s^2 \mathcal{L}(f(t)) - sf(0) - f'(0)$

Hint. Use that f'' is the derivative of f'. Let g = f' and note $\mathcal{L}(g'(t)) = s\mathcal{L}(g(t)) - g(0)$

Table 6.2.1

Section 6.3

Thm 6.3.1

Hint: $\int_0^\infty h(t)dt = \int_0^c h(t)dt + \int_c^\infty h(t)dt$ and use *u*-substitution (let u = t - c).

Thm 6.3.2

Hint: Let $F(s) = \mathcal{L}(f(t))$. Use definition of Laplace transform to evaluate $\mathcal{L}(e^{ct}f(t))$ and F(s-c).

Better Hint: Let $F(s) = \mathcal{L}(f(t)) = \dots$ To calculate F(s - c) evaluate F(s) at s - c (i.e. replace s with s - c). Use definition of Laplace transform to evaluate $\mathcal{L}(e^{ct}f(t))$.

NOT on exam:

Thm: If f is a bijective linear function, then f^{-1} is also a linear function.

Cor: \mathcal{L}^{-1} is linear.

Cor 6.2.2

Hint: Use proof by induction.