[4] 1a.) $\mathcal{L}(0)=\underline{0}$
$\left[\begin{array}{ll}10] & 1 b .) \\ \mathcal{L}^{-1}\left(\frac{2}{(s-4)^{2}+5}\right)=\frac{2}{\sqrt{5}} e^{4 t} \sin (t \sqrt{5}) \\ \hline\end{array}\right.$
$\mathcal{L}^{-1}\left(\frac{2}{(s-4)^{2}+5}\right)=\frac{2}{\sqrt{5}} \mathcal{L}^{-1}\left(\frac{\sqrt{5}}{(s-4)^{2}+5}\right)=\frac{2}{\sqrt{5}} e^{4 t} \sin (t \sqrt{5})$
[4] 2.) Circle T for True or F for False:
Suppose $y=f(t)$ is a solution to $3 y^{\prime \prime}+10 y=\cos (t), y(0)=0, y^{\prime}(0)=0$ and suppose $y=g(t)$ is a solution to $3 y^{\prime \prime}+10 y=\cos (t), y(0)=100, y^{\prime}(0)=-200$. For large values of $t, f(t)-g(t)$ is very small.
[4] 3a.) Given $2 y^{\prime \prime}+5 y=\cos (w t)$, determine the value w for which undamped resonance occurs:
$2 r^{2}+5=0$. Thus $r=i \sqrt{\frac{5}{2}}$. Hence homogeneous soln is $y(t)=c_{1} \cos \left(t \sqrt{\frac{5}{2}}\right)+c_{2} \sin \left(t \sqrt{\frac{5}{2}}\right)$. Hence a potential solution for the non-homogeneous equation $2 y^{\prime \prime}+5 y=\cos \left(t \sqrt{\frac{5}{2}}\right)$ would be of the form: $t\left[A \cos \left(t \sqrt{\frac{5}{2}}\right)+B \sin \left(t \sqrt{\frac{5}{2}}\right)\right]$.

$$
\text { Answer } w=\sqrt{\frac{5}{2}}
$$

[3] 3b.) Briefly describe in words the long-term behaviour of a solution to $2 y^{\prime \prime}+5 y=\cos (w t)$ for this value of w.

The solution oscillates and the pseudo-amplitude gets increasingly larger, approaching infinity.
[15] 4.) A mass of 4 kg stretches a spring 5 m . The mass is acted on by an external force of $6 e^{t} \mathrm{~N}$ (newtons) and moves in a medium that imparts a viscous force of 8 N when the speed of the mass is $15 \mathrm{~m} / \mathrm{sec}$. The mass is pulled downward 1 m below its equilibrium position, and then set in motion in the upward direction with a velocity of $10 \mathrm{~m} / \mathrm{sec}$. Formulate the initial value problem describing the motion of the mass.
$m=4$. $F_{\text {viscous }}(t)=-\gamma v(t)$, where $v=$ velocity. Hence $8=15 \gamma$ implies $\gamma=\frac{8}{15}$. Also, $m g=k L$. Hence $k=\frac{m g}{L}=\frac{4(9.8)}{5}$.

$$
\text { Answer } \quad 4 u^{\prime \prime}(t)+\frac{8}{15} u^{\prime}(t)+\frac{4(9.8)}{5} u(t)=6 e^{t}
$$

[20] 5.) Use ch 3 methods to solve the given initial value problem.

$$
y^{\prime \prime}+4 y=\sin (t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Step 1.) Find the general solution to $y^{\prime \prime}+4 y=0$:
Guess $y=e^{r t}$. Then $r^{2} e^{r t}+4 e^{r t}=0$ implies $\mathrm{r}^{2}+4=0$ which implies $r= \pm 2 i$. homogeneous solution: $y(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)$

Step 2.) Find ONE solution to $y^{\prime \prime}+4 y=\sin (t)$:
Educated guess: $y=A \sin (t) \quad$ (since no y' term).
$y=A \sin (t) \quad y^{\prime}=A \cos (t) \quad y^{\prime \prime}=-A \sin (t)$
$-A \sin (t)+4 A \sin (t)=\sin (t)$.
$3 A \sin (t)=\sin (t)$. Hence $3 A=1$ and $A=\frac{1}{3}$.
The general solution to NON-homogeneous equation is

$$
c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{1}{3} \sin (t)
$$

Step 3.) Initial value problem:
Once general solution to problem is known, can solve initial value problem (i.e., use initial conditions to find c_{1}, c_{2}).
$y(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{1}{3} \sin (t)$
$y^{\prime}(t)=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)+\frac{1}{3} \cos (t)$
$y(0)=0: 0=c_{1}$
$y^{\prime}(0)=0: 0=2 c_{2}+\frac{1}{3}$. Hence $2 c_{2}=-\frac{1}{3}$ and $c_{2}=-\frac{1}{6}$

Answer $\quad y(t)=-\frac{1}{6} \sin (2 t)+\frac{1}{3} \sin (t)$
[25] 6.) Use the LaPlace transform to solve the given initial value problem.

$$
y^{\prime \prime}+4 y=\sin (t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

$\mathcal{L}\left(y^{\prime \prime}+4 y\right)=\mathcal{L}(\sin (t))$
$\mathcal{L}\left(y^{\prime \prime}\right)+4 \mathcal{L}(y)=\frac{1}{s^{2}+1}$
$s^{2} \mathcal{L}(y)-s y(0)-y^{\prime}(0)+4 \mathcal{L}(y)=\frac{1}{s^{2}+1}$
$s^{2} \mathcal{L}(y)+4 \mathcal{L}(y)=\frac{1}{s^{2}+1}$
$\mathcal{L}(y)\left[s^{2}+4\right]=\frac{1}{s^{2}+1}$
$\mathcal{L}(y)=\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}$. Hence $y=\mathcal{L}^{-1}\left(\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right)$
Partial Fractions:
$\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}=\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+4}$
$1=(A s+B)\left(s^{2}+4\right)+(C s+D)\left(s^{2}+1\right)$
$1=A s^{3}+B s^{2}+4 A s+4 B+C s^{3}+D s^{2}+C s+D$
$1=(A+C) s^{3}+(B+D) s^{2}+(4 A+C) s+4 B+D$
$A+C=0$ and $4 A+C=0$.
Hence $C=-A$ and $4 A-A=0$. Hence $3 A=0$ and $A=0, C=0$.
Alternatively note $A=0, C=0$ is "obviously a solution" and you only need one (plus it is "obvious" that there is only one solution). Note how "obvious" this is depends on your linear algebra background.
$B+D=0$ and $4 B+D=1$
Hence $D=-B$ and $4 B-B=1$. Hence $3 B=1$ and $B=\frac{1}{3}, D=-\frac{1}{3}$
$\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}=\frac{1}{3\left(s^{2}+1\right)}+\frac{-1}{3\left(s^{2}+4\right)}$
$y=\mathcal{L}^{-1}\left(\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right)=\mathcal{L}^{-1}\left(\frac{1}{3\left(s^{2}+1\right)}+\frac{-1}{3\left(s^{2}+4\right)}\right)=\frac{1}{3} \mathcal{L}^{-1}\left(\frac{1}{s^{2}+1}\right)-\frac{1}{3} \mathcal{L}^{-1}\left(\frac{1}{s^{2}+4}\right)$
$=\frac{1}{3} \sin (t)-\frac{1}{6} \mathcal{L}^{-1}\left(\frac{2}{s^{2}+4}\right)=\frac{1}{3} \sin (t)-\frac{1}{6} \sin (2 t)$

Answer $\quad \frac{1}{3} \sin (t)-\frac{1}{6} \sin (2 t)$
[15] 7.) Prove that if $F(s)=\mathcal{L}(f(t))$ exists for $s>a \geq 0$, and if c is a positive constant, then $\mathcal{L}\left(u_{c}(t) f(t-c)\right)=e^{-c s} \mathcal{L}(f(t))$ with domain $s>a$.

Hint: $\int_{0}^{\infty} h(t) d t=\int_{0}^{c} h(t) d t+\int_{c}^{\infty} h(t) d t$ and use u-substitution (let $u=t-c$).
Proof: If the integral $\int_{0}^{\infty} e^{-s t} u_{c}(t) f(t-c) d t$ exists, then
$\mathcal{L}\left(u_{c}(t) f(t-c)\right)=\int_{0}^{\infty} e^{-s t} u_{c}(t) f(t-c) d t$
$=\int_{0}^{c} e^{-s t} u_{c}(t) f(t-c) d t+\int_{c}^{\infty} e^{-s t} u_{c}(t) f(t-c) d t$
$=\int_{0}^{c} e^{-s t} \cdot 0 \cdot f(t-c) d t+\int_{c}^{\infty} e^{-s t} \cdot 1(t-c) d t$
$=0+\int_{c}^{\infty} e^{-s t} f(t-c) d t$
Let $u=t-c$, then $d u=d t$ and $t=u+c$. When $t=c, u=c-c=0$
$\int_{c}^{\infty} e^{-s t} f(t-c) d t$
$=\int_{0}^{\infty} e^{-s(u+c)} f(u) d u$
$=\int_{0}^{\infty} e^{-s u} e^{-s c} f(u) d u$
$=e^{-s c} \int_{0}^{\infty} e^{-s u} f(u) d u$ since $e^{-s c}$ is a constant with respect to u.
$=e^{-s c} \mathcal{L}(f(u))$
$=e^{-s c} \mathcal{L}(f(t))$
Note $F(s)=\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s u} f(u) d u$ exists for $s>a$.
Hence $\mathcal{L}\left(u_{c}(t) f(t-c)\right)=\int_{0}^{\infty} e^{-s t} u_{c}(t) f(t-c) d t$ exists for $s>a$ and $\mathcal{L}\left(u_{c}(t) f(t-c)\right)=e^{-s c} \mathcal{L}(f(t))$.

