1.) Define: The LaPlace transform of $f=\mathcal{L}(f)=\underline{\int_{0}^{\infty} e^{-s t} f(t) d t}$

2a.) $\mathcal{L}(0)=\underline{0}$

2b.) $\mathcal{L}^{-1}\left(\frac{3}{(s+1)^{2}+2}\right)=\underline{\frac{3 e^{-t}}{\sqrt{2}} \sin (\sqrt{2} t)}$
$\mathcal{L}^{-1}\left(\frac{3}{(s+1)^{2}+2}\right)=3 \mathcal{L}^{-1}\left(\frac{1}{(s+1)^{2}+2}\right)=\frac{3}{\sqrt{2}} \mathcal{L}^{-1}\left(\frac{\sqrt{2}}{(s+1)^{2}+2}\right)=\frac{3 e^{-t}}{\sqrt{2}} \mathcal{L}^{-1}\left(\frac{\sqrt{2}}{(s)^{2}+2}\right)=\frac{3 e^{-t}}{\sqrt{2}} \sin (\sqrt{2} t)$
3.) Circle T for True or F for False:

3a.) Suppose $y=f(t)$ is a solution to $y^{\prime \prime}+y^{\prime}+y=\cos (2 t), y(0)=0, y^{\prime}(0)=0$, and suppose $y=g(t)$ is a solution to $y^{\prime \prime}+y^{\prime}+y=\cos (2 t), y(0)=100, y^{\prime}(0)=-200$. For large values of $t, f(t)-g(t)$ is very small.

3b.) The initial conditions have a transient effect on the solution to $y^{\prime \prime}+y=\cos (2 t)$.

3c.) The initial conditions have a transient effect on the solution to $y^{\prime \prime}-y^{\prime}+y=\cos (2 t)$.
4.) Match the following differential equation initial value problem to its graph:
$\mathrm{B}=\mathrm{I}.) y^{\prime \prime}+y=\cos (t), y(0)=0, y^{\prime}(0)=0$
$\mathrm{A}=\mathrm{II}$.) $y^{\prime \prime}+y=\cos (1.2 t), y(0)=0, y^{\prime}(0)=0$

