Preliminary version:

Thm 6.2.1: Hint: use integration by parts and let $d v=f^{\prime}(t)$
Thm 6.3.2: Hint: Let $F(s)=\mathcal{L}(f(t))=\ldots$..... To calculate $F(s-c)$ evaluate $F(s)$ at $s-c$ (i.e. replace s with $s-c$). Use definition of Laplace transform to evaluate

Thm: The Laplace transform is a linear operator.
Hint: $\mathcal{L}(a f(t)+b g(t))=\ldots$ OR $[\mathcal{L}(a f(t))=\ldots$ and $\mathcal{L}(f(t)+$ $g(t))=\ldots]$

Thm: $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$ is linear.
Hint: $L\left(k_{1} f(t)+k_{2} g(t)\right)=\ldots$ OR $[L(k f(t))=\ldots$ and $L(f(t)+$ $g(t))=\ldots]$

Thm 3.2.2: If $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are solutions to $y^{\prime \prime}+$ $p(t) y+q(t) y=0$, then $y=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is also a solution to this homogeneous equation.

Thm 7.4.1: If $\vec{y}=\overrightarrow{\phi_{1}}(t)$ and $\vec{y}=\overrightarrow{\phi_{2}}(t)$ are solutions to $\vec{y}^{\prime}=$ $P(t) \vec{y}$, then $\vec{y}=c_{1} \overrightarrow{\phi_{1}}(t)+c_{2} \overrightarrow{\phi_{2}}(t)$ is also a solution to this homogeneous equation.

Thm 3.5.1: If $y=\psi_{1}(t)$ and $y=\psi_{2}(t)$ are solutions to $y^{\prime \prime}+$ $p(t) y+q(t) y=g(t)$, then $y=\psi_{2}(t)-\psi_{1}(t)$ is a solution to the homogeneous equation $y^{\prime \prime}+p(t) y+q(t) y=0$.

Note 3.5.1 plus previous thms imply $\psi_{2}(t)-\psi_{1}(t)=c_{1} \phi_{1}+c_{2} \phi_{2}$ for some constants c_{1}, c_{2} where ϕ_{1}, ϕ_{2} are 2 linearly independent solutions to the homogeneous equation.

Hence $\psi_{2}(t)=c_{1} \phi_{1}+c_{2} \phi_{2}+\psi_{1}(t)$. I.e., if you can find the general homogeneous solution $\left(c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)\right)$ and one nonhomogeneous, then you can find all non-homogeneous solutions to $y^{\prime \prime}+p(t) y+q(t) y=g(t)$. I.e., this non-homogeneous equation has general solution: $y=c_{1} \phi_{1}+c_{2} \phi_{2}+\psi_{1}(t)$.

