Math 34 Differential Equations Exam \#1
March 4, 2005

SHOW ALL WORK

[27] 1.) A mass weighing 1 kg stretches a spring 9.8 m . If the mass is pulled down an additional 2 m and then set in motion with an upward velocity of $2 \mathrm{~m} / \mathrm{sec}$, and if there is no damping, determine the position u of the mass at any time t. Find the frequency, period, and amplitude of the motion.

Answer
position: \qquad
frequency $=$ \qquad period $=$ \qquad amplitude $=$ \qquad
[18] 2.) Find the general solution to the following differential equation:

$$
4 y^{\prime}=t\left(y^{2}-4\right)
$$

[18] 3.) Find the general solution to the following differential equation:

$$
t y^{\prime}+3 y=t^{5}
$$

Answer 3.)
[15] 4.) Draw a direction field for the following differential equation:

$$
y^{\prime}=(y+3)(y-2)
$$

Find the equilibrium solution(s) and determine if asymtptotically stable, semistable, or unstable.
[9] 5.) Suppose that the general solution to $y^{\prime \prime}-y=0$ is $c_{1} e^{t}+c_{2} e^{-t}$. Find the general solution to $y^{\prime \prime}-y=\cos (t)$
[6] 6.) Calculate the Wronskian of $f(x)=e^{x}$ and $g(x)=e^{x-1}$. Are f and g linearly dependent or linearly independent?
7.) Match the following differential equation to its graph:
[3] 7i.) $y^{\prime \prime}+2 y^{\prime}+y=0, y(0)=0.1, y^{\prime}(0)=0.2$
[3] 7ii) $y^{\prime \prime}+2 y^{\prime}+10 y=0, y(0)=0.1, y^{\prime}(0)=0.2$
[3] 7iii) $y^{\prime \prime}+10 y=0, y(0)=0.1, y^{\prime}(0)=0.2$

