Math 34 Differential Equations Final Exam
May 10, 2005
[12] 1.) Solve: $t^{2} y^{\prime}-3 t y=t^{5} \cos (2 t)$
[12] 2.) Solve: $2 y y^{\prime}-\frac{e^{-y^{2}}}{t^{3}}=0$

Answer 2.)
$[12]$ 3.) Solve $y^{\prime \prime}+2 y^{\prime}+y=t \sin (t), y(0)=0, y^{\prime}(0)=0$

Answer 3.)
[12] 4.) Solve: $y^{\prime \prime}+4 y^{\prime}+10 y=\delta(t-\pi), y(0)=0, y^{\prime}(0)=0$

Answer 4.)
[12] 5.) Solve: $\mathbf{x}^{\prime}=\left(\begin{array}{cc}6 & 1 \\ 12 & 5\end{array}\right) \mathbf{x}$. Also describe the behavior of the solution as $t \rightarrow \infty$.
[12] 6.) Use the convolution integral to find the inverse Laplace transform of $\frac{1}{s\left(s^{2}+9\right)}$
[12] 7.) A ball with mass 3 kg is thrown upward with an initial velocity of $10 \mathrm{~m} / \mathrm{sec}$ from the roof of a building 20 m high. Neglect air resistance. Find the maximum height above the ground that the ball reaches.
[12] 8.) A mass weighing 2 kg stretches a spring 4.9 m . If the mass is pushed upward an additional 3 m and then set in motion with a downward velocity of $3 \sqrt{2} \mathrm{~m} / \mathrm{sec}$, and if there is no damping, determine the position u of the mass at any time t. Find the frequency, period, phase shift and amplitude of the motion.
[2] 9.) Suppose $y=2 e^{t}$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=e^{t}$. Then a solution to
$a y^{\prime \prime}+b y^{\prime}+c y=5 e^{t}$ is \qquad .
[2] 10.) Suppose the following is a direction field in the x_{1}, x_{2} plane for the system $\mathbf{x}^{\prime}=A \mathbf{x}$ where the eigenvalues of A are $k=1,-2$. What is the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ (hint: what are the eigenvectors of A ?).
11.) Match the following system of differential equation to its direction field (hint: evaluate eigenvectors):
$[2] \quad \mathrm{x}^{\prime}=\left(\begin{array}{cc}3 & 3 \\ 4 & -1\end{array}\right)$
$[2] \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right)$

Extra problem (can substitute for one of the first 5 problems)
a.) Suppose f_{1} and f_{2} are solutions to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$. Prove the $c_{1} f_{1}+c_{2} f_{2}$ is also a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$.
b.) Suppose f_{1} and f_{2} are solutions to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y^{2}=0$. Prove the $f_{1}+f_{2}$ is NOT a solution to $a y^{\prime \prime}+b y^{\prime}+c y^{2}=0$ if neither f_{1} nor f_{2} is the constant zero function.

