Formulas

Gravitational force
near earth's surface: $m g$
far from earth's surface: $\frac{m g R^{2}}{(R+x)^{2}}$ where R is the radius of the earth.

Definition: The Wronskian of two differential functions, f and g is

$$
W(f, g)=f g^{\prime}-f^{\prime} g=\left|\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right|
$$

$\cos (y \mp x)=\cos (x \mp y)=\cos (x) \cos (y) \pm \sin (x) \sin (y)$

Mechanical Vibrations:

$$
\begin{gathered}
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{\text {external }}, \quad m, \gamma, k \geq 0 \\
m g-k L=0, \quad F_{\text {viscous }}(t)=\gamma u^{\prime}(t)
\end{gathered}
$$

$m=$ mass,
$k=$ spring force proportionality constant,
$\gamma=$ damping force proportionality constant
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}$

Electrical Vibrations:

$$
L \frac{d I(t)}{d t}+R I(t)+\frac{1}{C} Q(t)=E(t), \quad L, R, C \geq 0 \text { and } I=\frac{d Q}{d t}
$$

$L=$ inductance (henrys),
$R=$ resistance (ohms)
$C=$ capacitance (farads)
$Q(t)=$ charge at time t (coulombs)
$I(t)=$ current at time t (amperes)
$E(t)=$ impressed voltage (volts).

1 volt $=1$ ohm $\cdot 1$ ampere $=1$ coulomb $/ 1$ farad $=1$ henry $\cdot 1$ amperes $/ 1$ second

