Solving first order differential equation:

Method 1 (sect. 2.2): Separate variables.
Method 2 (sect. 2.1): If linear $\left[y^{\prime}(t)+p(t) y(t)=g(t)\right]$, multiply equation by an integrating factor $u(t)=e^{\int p(t) d t}$.

$$
\begin{gathered}
y^{\prime}+p y=g \\
y^{\prime} u+u p y=u g \\
(u y)^{\prime}=u g \\
\int(u y)^{\prime}=\int u g \\
u y=\int u g \\
\text { etc... }
\end{gathered}
$$

Method 3 (sect. 2.4): Solve Bernoulli's equation,

$$
y^{\prime}+p(t) y=g(t) y^{n},
$$

when $n>1$ by changing it to a linear equation by substituting $v=y^{1-n}$

If $v=\frac{d x}{d t}$, can use the following to simplify (especially if there are 3 variables).

$$
\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}
$$

