1.1: Examples of differentiable equation:
1.) $F=m a=m \frac{d v}{d t}=m g-\gamma v$
2.) Mouse population increases at a rate proportional to the current population:

More general model : $\frac{d p}{d t}=r p-k$
where $p(t)=$ mouse population at time t,
$r=$ growth rate or rate constant,
$k=$ predation rate $=\#$ mice killed per unit time.
direction field $=$ slope field $=$ graph of $\frac{d v}{d t}$ in t, v-plane.
www.math.rutgers.edu/~ sontag/JODE/JOdeApplet.htr
*** can use slope field to determine behavior of v including as $t \rightarrow \infty$.

Equilibrium Solution $=$ constant solution
1.2: Solve $\frac{d y}{d t}=a y+b$ by separating variables:
$\frac{d y}{a y+b}=d t$
$\int \frac{d y}{a y+b}=\int d t \quad$ implies $\quad \frac{\ln |a y+b|}{a}=t+C$
$\ln |a y+b|=a t+C \quad$ implies $\quad e^{\ln |a y+b|}=e^{a t+C}$
$|a y+b|=e^{C} e^{a t} \quad$ implies $\quad a y+b= \pm\left(e^{C} e^{a t}\right)$
$a y=C e^{a t}-b \quad$ implies $\quad y=C e^{a t}-\frac{b}{a}$
Initial Value Problem: $y\left(t_{0}\right)=y_{0}$

$1.3:$

ODE (ordinary differential equation): single independent variable

$$
\operatorname{Ex}: \frac{d y}{d t}=a y+b
$$

vs
PDE (partial differential equation): several independent variables

$$
\mathrm{Ex}: \frac{\partial x y}{\partial x}=\frac{\partial x y}{\partial y}
$$

order of differential eq'n: order of highest derivative example of order $n: y^{(n)}=f\left(t, y, \ldots, y^{(n-1)}\right)$

Linear vs Non-linear

linear: $a_{0}(t) y^{(n)}+\ldots+a_{n}(t) y=g(t)$
Determine if linear or non-linear:
Ex: $t y^{\prime \prime}-t^{3} y^{\prime}-3 y=\sin (t)$
Ex: $2 y^{\prime \prime}-3 y^{\prime}-3 y^{2}=0$
$* * * * * * * *$ Existence of a solution $* * * * * * * * * * * * * *$
$* * * * * * * *$ Uniqueness of solution ${ }^{* * * * * * * * * * * * * * * * ~}$

CH 2: Solve $\frac{d y}{d t}=f(t, y)$
2.2: Separation of variables: $N(y) d y=P(t) d t$
2.1: First order linear eqn: $\frac{d y}{d t}+p(t) y=g(t)$

Ex 1: $t^{2} y^{\prime}+2 t y=t \sin (t)$
Ex 2: $y^{\prime}=a y+b$
Ex 3: $y^{\prime}+3 t^{2} y=t^{2}, y(0)=0$
Note: could use section 2.2 method, separation of variables to solve ex 2 and 3 .
$\operatorname{Ex} 1: t^{2} y^{\prime}+2 t y=\sin (t)$
(note, cannot use separation of variables).
$t^{2} y^{\prime}+2 t y=\sin (t)$
$\left(t^{2} y\right)^{\prime}=\sin (t)$
$\int\left(t^{2} y\right)^{\prime} d t=\int \sin (t) d t$
$\left(t^{2} y\right)=-\cos (t)+C$ implies $y=-t^{-2} \cos (t)+C t^{-2}$
Gen ex: Solve $y^{\prime}+p(x) y=g(x)$
Let $F(x)$ be an anti-derivative of $p(x)$
$e^{F(x)} y^{\prime}+\left[p(x) e^{F(x)}\right] y=g(x) e^{F(x)}$
$e^{F(x)} y^{\prime}+\left[F^{\prime}(x) e^{F(x)}\right] y=g(x) e^{F(x)}$
$\left[e^{F(x)} y\right]^{\prime}=g(x) e^{F(x)}$
$e^{F(x)} y=\int g(x) e^{F(x)} d x$
$y=e^{-F(x)} \int g(x) e^{F(x)} d x$

