Note the following review problems DO NOT cover all problem types which may appear on the final.
6.3 preliminaries:

1a.) Suppose $f(t)=t^{2}$, then $f(t-2)=$ \qquad
1b.) Suppose $f(t)=t^{2}+3 t+4$, then $f(t-2)=$ \qquad
1c.) Suppose $f(t)=\sin (t)+e^{8 t}$, then $f(t-2)=$ \qquad
2a.) Suppose $f(t-2)=(t-2)^{2}$, then $f(t)=$ \qquad
2b.) Suppose $f(t-2)=(t-2)^{2}+3(t-2)+4$, then $f(t)=$ \qquad
2c.) Suppose $f(t-2)=\sin (t-2)+e^{8(t-2)}$, then $f(t)=$ \qquad
3a.) Suppose $f(t-2)=t^{2}+2 t+5$, then $f(t)=$ \qquad
3b.) Suppose $f(t-2)=3 t^{2}+8 t+1$, then $f(t)=$ \qquad
3c.) Suppose $f(t)=\cos (t)+4^{8 t}$, then $f(t)=$ \qquad
Chapter 6:
4.) Find the LaPlace transform of the following:

4a.) $\mathcal{L}\left(u_{3}\left(t^{2}-2 t+1\right)\right)=$ \qquad
4b.) $\mathcal{L}\left(u_{4}\left(e^{-8 t}\right)\right)=$ \qquad
4c.) $\mathcal{L}\left(u_{2}\left(t^{2} e^{3 t}\right)\right)=$ \qquad
5.) Find the inverse LaPlace transform of the following:

5a.) $\mathcal{L}^{-1}\left(e^{-8 s} \frac{1}{s-3}\right)=$ \qquad
5b.) $\mathcal{L}^{-1}\left(e^{4 s} \frac{1}{s^{2}-3}\right)=$ \qquad
5c.) $\mathcal{L}^{-1}\left(e^{s} \frac{1}{(s-3)^{2}+4}\right)=$ \qquad
5d.) $\mathcal{L}^{-1}\left(e^{-s} \frac{5}{(s-3)^{4}}\right)=$ \qquad
5e.) $\mathcal{L}^{-1}\left(\frac{e^{s}}{4 s}\right)=$ \qquad
5f.) $\mathcal{L}^{-1}\left(e^{s}\right)=$ \qquad
6.) Use the definition and not the table to find the LaPlace transform of the following:

6a.) $\mathcal{L}\left(t^{3}\right)=$ \qquad
6a.) $\mathcal{L}(\cos (t))=$ \qquad
7.) Find the inverse LaPlace transform of the following. Leave your answer in terms of a convolution integral:

7a.) $\mathcal{L}^{-1}\left(\frac{1}{(s-2)\left(s^{2}+4\right)}\right)=$ \qquad
7b.) $\mathcal{L}^{-1}\left(\frac{1}{(s-2)\left(s^{2}-4 s+5\right)}\right)=$ \qquad
7c.) $\mathcal{L}^{-1}\left(\frac{2 s}{(s-2)\left(s^{2}-4 s+5\right)}\right)=$ \qquad
8.) Find $f * g$

8a.) $4 t * 5 t^{4}=$ \qquad
8b.) $5 t^{4} * 4 t=$ \qquad
8c.) $\sin (t) * e^{t}=$ \qquad
Make sure you can also solve a quick differential equation using the LaPlace transform and use any of the formulas on p. 304.

Chapter 3:
9.) Solve the following initial problems:

9a.) $y^{\prime \prime}+6 y^{\prime}+8 y=0, y(0)=0, y^{\prime}(0)=0$
9b.) $y^{\prime \prime}+6 y^{\prime}+9 y=0, y(0)=0, y^{\prime}(0)=0$
9c.) $y^{\prime \prime}+6 y^{\prime}+10 y=0, y(0)=0, y^{\prime}(0)=0$
9d.) $y^{\prime \prime}+6 y^{\prime}+8 y=\cos (t), y(0)=0, y^{\prime}(0)=0$
9e.) $y^{\prime \prime}+6 y^{\prime}+9 y=\cos (t), y(0)=0, y^{\prime}(0)=0$
9f.) $y^{\prime \prime}+6 y^{\prime}+10 y=\cos (t), y(0)=0, y^{\prime}(0)=0$
3.8: 1-5, 7, 11, 14, 3.9: $1-8$

Make sure you understand sections 3.8, 3.9
10.) Solve the following initial problems:

10a.) $y^{\prime}+3 y+1=0, y(0)=0$

10b.) , $y(0)=0$
*10c. $) \cos (t) y^{\prime}-\sin (t) y=\frac{1}{t^{2}}, y(0)=0$
10d.) $y^{\prime}=\frac{3 x^{2}-2}{x y-x y^{2}}, y(0)=0$
Chapter 1:
11.) For each of the following, draw the direction field for the given differential equation. Based on the direction field, determine the behavior of y as $t \rightarrow \infty$. If this behavior depends on the initial value of y at $t=o$, describe this dependency.

11a.) $y^{\prime}=y$
11b.) $y^{\prime}=1$
11c.) $y^{\prime}=y(y+4)$
Chapter 7:
12.) Transform the given equation into a system of first order equations:

12a.) $x^{\prime \prime \prime}-2 x^{\prime \prime}+3 x^{\prime}-4 x=t^{2}$
12b.) $x^{\prime \prime \prime \prime}-2 x^{\prime \prime}+3 x^{\prime}-4 x=t^{2}$
Make sure you also study exam 1 and 2 as well as everything else. Remember the above list is INCOMPLETE.

* means optional type problem. If a problem like 10c appeared on the final, it would be in the "choose" section.

