$m r^{\prime \prime}=\frac{-G M m}{r^{2}}$
Let $v=r^{\prime}$, then $v^{\prime}=r^{\prime \prime}$
Thus we obtain system of non-linear equations:

$$
\begin{gathered}
r^{\prime}=v \\
v^{\prime}=\frac{-G M}{r^{2}}
\end{gathered}
$$

Note $v^{\prime}=\frac{-G M}{r^{2}}$ involves 3 variables: v, t, r
Eliminate $t: \quad v^{\prime}=\frac{d v}{d t}=\frac{d v}{d r} \frac{d r}{d t}=\frac{d v}{d r} v$
Thus $m v^{\prime}=\frac{-G M m}{r^{2}}$ becomes $m \frac{d v}{d r} v=\frac{-G M m}{r^{2}}$
Separate variables: $\int m d v v=\int \frac{-G M m}{r^{2}} d r$

$$
\frac{1}{2} m v^{2}=\frac{G M m}{r}+E \text { where } E \text { is a constant. }
$$

Thus we have derived the physics formula, conservation of energy:

$$
\frac{1}{2} m v^{2}+\frac{-G M m}{r}=E
$$

I.e., Kinetic Energy + Potential Energy $=$ constant

$$
\begin{aligned}
& x^{\prime}=-4 x-y \\
& y^{\prime}=-3 x+2 y
\end{aligned}
$$

Suppose the following represent direction fields of linear systems of 1rst order differential equations in the phase plane. What can you say about solutions to these systems of equations.

