To solve differential equations:
First order differential equation:
Method 1: Separate variables.
Method 2: If linear $\left[y^{\prime}+p(t) y=g(t)\right]$, multiply equation by an integrating factor $u=e^{\int p(t) d t}$.

$$
\begin{gathered}
y^{\prime} u+p(t) u y=u g(t) \\
(u y)^{\prime}=u g(t)
\end{gathered}
$$

Second order differential equation:

Method 1: If there is no independent variable (t) OR if there is no dependent variable (y), transform into first order differential equation:

$$
\text { let } v=\frac{d y}{d t}=y^{\prime} . \text { Then } v^{\prime}=
$$

If there are 3 variables, note: $\frac{d v}{d t}=\frac{d v}{d y} \frac{d y}{d t}=v \frac{d v}{d y}$
Method 2 (linear equation with constant coefficients): If the second order differential equation is

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0 \\
\text { then } y=e^{r t} \text { is a solution }
\end{gathered}
$$

Need to have two independent solutions.
$a y^{\prime \prime}+b y^{\prime}+c y=0, \quad y=e^{r t}$, then
$a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0$ implies $a r^{2}+b r+c=0$,
Suppose $r=r_{1}, r_{2}$ are solutions to $a r^{2}+b r+c=0$
If $r_{1} \neq r_{2}$, then $b^{2}-4 a c \neq 0$. Hence a general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$

If $b^{2}-4 a c>0$, general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.

If $b^{2}-4 a c<0$, change format to linear combination of real-valued functions instead of complex valued functions by using Euler's formula.
general solution is $y=c_{1} e^{d t} \cos (n t)+c_{2} e^{d t} \sin (n t)$ where $r=d \pm i n$

If $b^{2}-4 a c=0, r_{1}=r_{2}$, so need 2 nd (independent) solution: $t e^{r_{1} t}$

Hence general solution is $y=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}$.

Initial value problem: use $y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}$ to solve for c_{1}, c_{2} to find unique solution.

Derivation of general solutions:

If $b^{2}-4 a c>0$ we guessed $e^{r t}$ is a solution and noted that any linear combination of solutions is a solution to a homogeneous linear differential equation.

If $b^{2}-4 a c<0,:$
Changed format of $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$ to linear combination of real-valued functions instead of complex valued functions by using Euler's formula:

$$
e^{i t}=\cos (t)+i \sin (t)
$$

Hence $e^{(d+i n) t}=e^{d t} e^{i n t}=e^{d t}[\cos (n t)+i \sin (n t)]$
Let $r_{1}=d+i n, r_{2}=d-i n$

$$
\begin{aligned}
& y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} \\
& =c_{1} e^{d t}[\cos (n t)+i \sin (n t)]+c_{2} e^{d t}[\cos (-n t)+i \sin (-n t)] \\
& =c_{1} e^{d t} \cos (n t)+i c_{1} e^{d t} \sin (n t)+c_{2} e^{d t} \cos (n t)-i c_{2} e^{d t} \sin (n t) \\
& =\left(c_{1}+c_{2}\right) e^{d t} \cos (n t)+i\left(c_{1}-c_{2}\right) e^{d t} \sin (n t) \\
& \quad=k_{1} e^{d t} \cos (n t)+k_{2} e^{d t} \sin (n t)
\end{aligned}
$$

If $b^{2}-4 a c=0$, then $r_{1}=r_{2}$.
Hence one solution is $y=e^{r_{1} t}$ Need second solution.
If $y=e^{r t}$ is a solution, $y=c e^{r t}$ is a solution.
How about $y=v(t) e^{r t}$?
$y^{\prime}=v^{\prime}(t) e^{r t}+v(t) r e^{r t}$
$y^{\prime \prime}=v^{\prime \prime}(t) e^{r t}+v^{\prime}(t) r e^{r t}+v^{\prime}(t) r e^{r t}+v(t) r^{2} e^{r t}$

$$
=v^{\prime \prime}(t) e^{r t}+2 v^{\prime}(t) r e^{r t}+v(t) r^{2} e^{r t}
$$

$a y^{\prime \prime}+b y^{\prime}+c y=0$
$a\left(v^{\prime \prime}(t) e^{r t}+2 v^{\prime}(t) r e^{r t}+v(t) r^{2} e^{r t}\right)+b\left(v^{\prime}(t) e^{r t}+v(t) r e^{r t}\right)+\square$ $c\left(v(t) e^{r t}\right)=0$
$a\left(v^{\prime \prime}(t)+2 v^{\prime}(t) r+v(t) r^{2}\right)+b\left(v^{\prime}(t)+v(t) r\right)+c v(t)=0$
$a v^{\prime \prime}(t)+2 a v^{\prime}(t) r+a v(t) r^{2}+b v^{\prime}(t)+b v(t) r+c v(t)=0$
$a v^{\prime \prime}(t)+(2 a r+b) v^{\prime}(t)+\left(a r^{2}+b r+c\right) v(t)=0$
$a v^{\prime \prime}(t)+\left(2 a\left(\frac{-b}{2 a}\right)+b\right) v^{\prime}(t)+0=0$
Since $a r^{2}+b r+c=0$ and $r=\frac{-b}{2 a}$
$a v^{\prime \prime}(t)+(-b+b) v^{\prime}(t)=0$
$a v^{\prime \prime}(t)=0$
Hence $v^{\prime \prime}(t)=0$
$v^{\prime}(t)=k_{1}$
$v(t)=k_{1} t+k_{2}$
Hence $v(t) e^{r_{1} t}=\left(k_{1} t+k_{2}\right) e^{r_{1} t}$ is a soln
Hence $t e^{r_{1} t}$ is a nice second solution.
Hence general solution is $y=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}$
3.6 Nonhomogeneous Equations: $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$

Method of Undetermined Coefficients.

