Existence and Uniqueness

1st order LINEAR differential equation:

Thm 2.4.1: If $p:(a, b) \rightarrow R$ and $g:(a, b) \rightarrow R$ are continuous and $a<t_{0}<b$, then there exists a unique function $y=\phi(t), \phi:(a, b) \rightarrow R$ that satisfies the initial value problem

$$
\begin{gathered}
y^{\prime}+p(t) y=g(t), \\
y\left(t_{0}\right)=y_{0}
\end{gathered}
$$

2nd order LINEAR differential equation:

Thm 3.2.1: If $p:(a, b) \rightarrow R, q:(a, b) \rightarrow R$, and $g:(a, b) \rightarrow R$ are continuous and $a<t_{0}<b$, then there exists a unique function $y=\phi(t), \phi:(a, b) \rightarrow R$ that satisfies the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \\
y\left(t_{0}\right)=y_{0} \\
y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{gathered}
$$

Thm 3.2.2: If ϕ_{1} and ϕ_{2} are two solutions to a homogeneous linear differential equation, the $c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution to this linear differential equation.

Definition: The Wronskian of two differential functions, f and g is

$$
W(f, g)=f g^{\prime}-f^{\prime} g=\left|\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right|
$$

Thm 3.2.3: Suppose that ϕ_{1} and ϕ_{2} are two solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. If $W\left(\phi_{1}, \phi_{2}\right)\left(t_{0}\right)=$ $\phi_{1}\left(t_{0}\right) \phi_{2}^{\prime}\left(t_{0}\right)-\phi_{1}^{\prime}\left(t_{0}\right) \phi_{2}\left(t_{0}\right) \neq 0$, then there is a unique choice of constants c_{1} and c_{2} such that $c_{1} \phi_{1}+c_{2} \phi_{2}$ satisfies this homogeneous linear differential equation and initial conditions, $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$.

Thm 3.2.4: Given the hypothesis of thm 3.2.1 Suppose that ϕ_{1} and ϕ_{2} are two solutions to $y^{\prime \prime}+p(t) y^{\prime}+$ $q(t) y=0$. If $W\left(\phi_{1}, \phi_{2}\right)\left(t_{0}\right) \neq 0$, for some $t_{0} \in(a, b)$, then any solution to this homogeneous linear differential equation can be written as $y=c_{1} \phi_{1}+c_{2} \phi_{2}$ for some c_{1} and c_{2}.

Defn If ϕ_{1} and ϕ_{2} satisfy the conditions in thm 3.2.4, then ϕ_{1} and ϕ_{2} form a fundamental set of solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.

Thm 3.2.5: Given any second order homogeneous linear differential equation, there exist a pair of functions which form a fundamental set of solutions.
3.3: Linear Independence and the Wronskian

Defn: f and g are linearly dependent if there exiss constants c_{1}, c_{2} such that $c_{1} \neq 0$ or $c_{2} \neq 0$ and $c_{1} f(t)+c_{2} g(t)=0$ for all $t \in(a, b)$

Thm 3.3.1: If $f:(a, b) \rightarrow R$ and $g(a, b) \rightarrow R$ are differentiable functions on (a, b) and if $W(f, g)\left(t_{0}\right) \neq 0$ for some $t_{0} \in(a, b)$, then f and g are linearly independent on (a, b). Moreover, if f and g are linearly dependent on (a, b), then $W(f, g)(t)=0$ for all $t \in(a, b)$

$$
c_{1} f(t)+c_{2} g(t)=0 \text { implies } c_{1}^{\prime} f(t)+c_{2} g^{\prime}(t)=0
$$

Solve the following linear system of equations for c_{1}, c_{2}

$$
\begin{aligned}
& c_{1} f\left(t_{0}\right)+c_{2} g\left(t_{0}\right)=0 \\
& c_{1} f^{\prime}\left(t_{0}\right)+c_{2} g^{\prime}\left(t_{0}\right)=0 \\
& {\left[\begin{array}{cc}
f\left(t_{0}\right) & g\left(t_{0}\right) \\
f^{\prime}\left(t_{0}\right) & g^{\prime}\left(t_{0}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

