

2.3 Connectivity

Definition 2.8: Consider a graph G. $A\left(\mathbf{v}_{0}, \mathbf{v}_{\mathbf{k}}\right)$-walk in G is an alternating sequence $\left[v_{0}, e_{1}, v_{1}, e_{2} \ldots v_{k-1}, e_{k}, v_{k}\right]$ of vertices and edges from G with $e_{i}=$ $\left\langle v_{i-1}, v_{i}\right\rangle$. In a closed walk, $v_{0}=v_{k}$. A trail is a walk in which all edges are distinct; a path is a trail in which also all vertices are distinct. A cycle is a closed trail in which all vertices except v_{0} and v_{k} are distinct.

Definition 2.9: Two distinct vertices u and v in graph G are connected if there exists a (u, v) - path in G. G is connected if all pairs of distinct vertices are connected.

2.3 Connectivity

Definition 2.8: Consider a graph G. A $\left(\mathbf{v}_{0}, \mathbf{v}_{\mathbf{k}}\right)$-walk in G is an alternating sequence $\left[v_{0}, e_{1}, v_{1}, e_{2} \ldots v_{k-1}, e_{k}, v_{k}\right]$ of vertices and edges from G with $e_{i}=$ $\left\langle v_{i-1}, v_{i}\right\rangle$. In a closed walk, $v_{0}=v_{k}$. A trail is a walk in which all edges are distinct; a path is a trail in which also all vertices are distinct. A cycle is a closed trail in which all vertices except v_{n} and v_{k} are distinct.

Definition 2.9: Two distinct vertices u and v in graph G are connected if there exists a (u, v) - path in $G . G$ is connected if all pairs of distinct vertices are connected.

Definition 2.10: A subgraph H of G is called a component of G if H is connected and not contained in a connected subgraph of G with more vertices or edges. The number of components of G is denoted as $\omega(G)$.

Definition 2.11: For a graph G let $V^{*} \subset V(G)$ and $E^{*} \subset E(G) . V^{*}$ is called a vertex cut if $\omega\left(G-V^{*}\right)>\omega(G)$. If V^{*} consists of a single vertex v, then v is called a cut vertex. Likewise, if $\omega\left(G-E^{*}\right)>\omega(G)$ then E^{*} is called an edge cut. If E^{*} consists of only a single edge e, then e is known as a cut edge.

