Lemma: If T is a tree with |V(T)| = n > 1, then $\exists u \in V(T)$ such that $\delta(u) = 1$.

Since T is a tree, T is connected. Thus |V(T)| > 1implies $\delta(v) \ge 1 \ \forall v \in V(T)$.

Proof by contradiction: Suppose $\exists u \in V(T)$ such that $\delta(u) = 1$.

Then $\forall v \in V(T), \, \delta(v) > 1.$

Let $v_1, v_2, ..., v_k$ be a longest path in T (since V(T) is finite, a longest path exists).

 $\delta(v_k) > 1$ implies $\exists u \in V(T)$ such that $w \neq v_{k-1}$.

If $w = v_i$ for i < k-1, then $v_i, v_{i+1}, ..., v_k, w$ is a cycle, contradicting that T is a tree. Thus $v_1, v_2, ..., v_k, w$ is a path in T

But this path is longer than $v_1, v_2, ..., v_k$, contradicting that we took a longest path in T.

Thus we have a contradiction and hence $\exists u \in V(T)$ such that $\delta(u) = 1$.

Note: we could have modified the above proof to show that $\exists \ 2 \ \text{vertices in } V(T)$ with degree one.

Lemma 2.1: If *T* is a tree, then |E(T)| = |V(T)| - 1.

Proof by induction on n = |V(T)|.

Suppose n = 1.

Then $V(T) = \{v\}$ and $E(T) = \emptyset$.

Thus |V(T)| - 1 = 1 - 1 = 0 = |E(T)|.

Induction hypothesis: If T is a tree with n - 1 vertices, then |E(T)| = |V(T)| - 1.

Claim: If T is a tree with n vertices, then |E(T)| = |V(T)| - 1.

Let T be a tree with n vertices. Let $u \in V(T)$ such that $\delta(u) = 1$.

Let $\langle u, w \rangle \in E(T)$.

Let $T' = (V(T) - \{u\}, E(T) - \{\langle u, w \rangle\})$

Claim: T' is a tree:

If T' contains a cycle, then T contains a cycle.

If $x, y \in V(T') \subset V(T)$, then \exists an x - y path in T. Note this path does not contain the vertex u nor the edge $\langle u, w \rangle$ since $\delta(u) = 1$. Thus this x - y path lives in T' and T' is connected.

Thus T' is a tree. Note |V(T')| = n - 1.

By the induction hypothesis, |E(T')| = |V(T')| - 1.

Thus
$$|E(T)| - 1 = (|V(T)| - 1) - 1.$$

Therefore |E(T)| = |V(T)| - 1

Lemma: If T is a tree and $e_0 \in E(T)$, then $T - e_0 = T_1 \cup T_2$ where $T_1 \cup T_2 = \emptyset$ and T_1 and T_2 are trees.

Pf: Let $e_0 = \langle u, w \rangle$. If $T - e_0$ is connected, then there exists a path $w, v_1, ..., v_k, u$ in $T - e_0$. But then $w, v_1, ..., v_k, u, w$ is a circuit in T. But T is a tree. Thus $T - e_0$ is not connected. Hence e_0 is a cut edge. Recall removing a minimal edge cut disconnects a graph into two connected components. Thus $T - e_0 =$ $T_1 \cup T_2$ where T_i are connected. If T_1 or T_2 contains a cycle, then so does T. Hence T_1 and T_2 are trees.

Proof 2:

Lemma 2.1: If T is a tree, then |E(T)| = |V(T)| - 1.

Proof by induction on m = |E(T)|.

Suppose m = 0

Then $V(T) = \{v\}$ and $E(T) = \emptyset$.

Thus |V(T)| - 1 = 1 - 1 = 0 = |E(T)|.

Induction hypothesis: If T is a tree with |E(T)| < m, then |E(T)| = |V(T)| - 1.

Claim: If T is a tree with m > 0 edges, then |E(T)| = |V(T)| - 1.

Let T be a tree with m > 0 edges. Take $e_0 \in E(T)$.

Then $T - e_0 = T_1 \cup T_2$ where T_1 and T_2 are trees.

Since $E(T_i) \subset E(T) - \{e_0\}, |E(T_i)| < m.$

By the induction hypothesis, $|E(T_i)| = |V(T_i)| - 1$

 $E(T) = E(T_1) \cup E(T_2) \cup \{e_0\} \text{ and } E(T_1) \cap E(T_2) = \emptyset.$ Thus $|E(T)| = |E(T_1)| + |E(T_2)| + 1.$

 $V(T) = V(T_1) \cup V(T_2)$ and $V(T_1) \cap V(T_2) = \emptyset$. Thus $|V(T)| = |V(T_1)| + |V(T_2)|.$

Hence $|E(T)| = |E(T_1)| + |E(T_2)| + 1$ = $|V(T_1)| - 1 + |V(T_2)| - 1 + 1 = |V(T)| - 1.$