
Lemma: If T is a tree with |V (T )| = n > 1, then
∃u ∈ V (T ) such that δ(u) = 1.

Since T is a tree, T is connected. Thus |V (T )| > 1
implies δ(v) ≥ 1 ∀v ∈ V (T ).

Proof by contradiction: Suppose ̸ ∃u ∈ V (T ) such
that δ(u) = 1.

Then ∀v ∈ V (T ), δ(v) > 1.

Let v1, v2, ..., vk be a longest path in T (since V (T )
is finite, a longest path exists).

δ(vk) > 1 implies ∃u ∈ V (T ) such that w ̸= vk−1.

If w = vi for i < k−1, then vi, vi+1, ..., vk, w is a cycle,
contradicting that T is a tree. Thus v1, v2, ..., vk, w
is a path in T

But this path is longer than v1, v2, ..., vk, contradict-
ing that we took a longest path in T .

Thus we have a contradiction and hence ∃u ∈ V (T )
such that δ(u) = 1.

Note: we could have modified the above proof to
show that ∃ 2 vertices in V (T ) with degree one.



Lemma 2.1: If T is a tree, then |E(T )| = |V (T )|−1.

Proof by induction on n = |V (T )|.

Suppose n = 1.

Then V (T ) = {v} and E(T ) = ∅.

Thus |V (T )| − 1 = 1− 1 = 0 = |E(T )|.

Induction hypothesis: If T is a tree with n − 1
vertices, then |E(T )| = |V (T )| − 1.

Claim: If T is a tree with n vertices, then |E(T )| =
|V (T )| − 1.

Let T be a tree with n vertices. Let u ∈ V (T ) such
that δ(u) = 1.

Let < u,w > ∈ E(T ).

Let T ′ = (V (T )− {u}, E(T )− {< u,w >})

Claim: T ′ is a tree:

If T ′ contains a cycle, then T contains a cycle.

If x, y ∈ V (T ′) ⊂ V (T ), then ∃ an x − y path in T .
Note this path does not contain the vertex u nor the



edge < u,w > since δ(u) = 1. Thus this x − y path
lives in T ′ and T ′ is connected.

Thus T ′ is a tree. Note |V (T ′)| = n− 1.

By the induction hypothesis, |E(T ′)| = |V (T ′)| − 1.

Thus |E(T )| − 1 = (|V (T )| − 1)− 1.

Therefore |E(T )| = |V (T )| − 1

Lemma: If T is a tree and e0 ∈ E(T ), then T −e0 =
T1 ∪ T2 where T1 ∪ T2 = ∅ and T1 and T2 are trees.

Pf: Let e0 =< u,w >. If T − e0 is connected, then
there exists a path w, v1, ..., vk, u in T − e0. But then
w, v1, ..., vk, u, w is a circuit in T . But T is a tree.
Thus T −e0 is not connected. Hence e0 is a cut edge.
Recall removing a minimal edge cut disconnects a
graph into two connected components. Thus T−e0 =
T1 ∪ T2 where Ti are connected. If T1 or T2 contains
a cycle, then so does T . Hence T1 and T2 are trees.

Proof 2:

Lemma 2.1: If T is a tree, then |E(T )| = |V (T )| − 1.

Proof by induction on m = |E(T )|.



Suppose m = 0

Then V (T ) = {v} and E(T ) = ∅.

Thus |V (T )| − 1 = 1− 1 = 0 = |E(T )|.

Induction hypothesis: If T is a tree with
|E(T )| < m, then |E(T )| = |V (T )| − 1.

Claim: If T is a tree with m > 0 edges, then
|E(T )| = |V (T )| − 1.

Let T be a tree with m > 0 edges. Take e0 ∈ E(T ).

Then T − e0 = T1 ∪ T2 where T1 and T2 are trees.

Since E(Ti) ⊂ E(T )− {e0}, |E(Ti)| < m.

By the induction hypothesis, |E(Ti)| = |V (Ti)| − 1

E(T ) = E(T1)∪E(T2)∪{e0} and E(T1)∩E(T2) = ∅.
Thus |E(T )| = |E(T1)|+ |E(T2)|+ 1.

V (T ) = V (T1)∪V (T2) and V (T1)∩V (T2) = ∅. Thus
|V (T )| = |V (T1)|+ |V (T2)|.

Hence |E(T )| = |E(T1)|+ |E(T2)|+ 1
= |V (T1)| − 1 + |V (T2)| − 1 + 1 = |V (T )| − 1.


