Q 1: Give the adjacency matrix for each of the following graphs, and draw those graphs.

G1: $V=\{1,2,3,4,5,6\}$ and

$$
E=\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,5\rangle,\langle 2,6\rangle,\langle 3,5\rangle,\langle 3,6\rangle,\langle 4,5\rangle,\langle 4,6\rangle\}
$$

G2: $V=\{1,2,3,4,5\}$ and

$$
E=\{\langle 1,2\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 2,5\rangle,\langle 3,4\rangle,\langle 3,5\rangle\}
$$

For the graph G1, the neighborhood of vertex $1, N(1)=$ \qquad the degree of vertex 1 is \qquad
Draw the subgraph induced by the vertices $\{1,2,4,5\}$

Q 2: Consider the following two graphs:
G1: $V=\{1,2,3,4,5,6\}$ and

$$
E=\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,5\rangle,\langle 2,6\rangle,\langle 3,5\rangle,\langle 3,6\rangle,\langle 4,5\rangle,\langle 4,6\rangle\}
$$

G2: $V=\{1,2,3,4,5\}$ and

$$
E=\{\langle 1,2\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 2,5\rangle,\langle 3,4\rangle,\langle 3,5\rangle\}
$$

For each graph, check whether it is (1) bipartite, (2) complete, (3) complete bipartite, (4) complete nonbaprtite.

Q 3: Draw the complement of the following two graphs:

Q 45: Test whether $[5,4,3,3,3,3,3,2]$ is graphic. If it is graphic, draw a simple graph with this sequence as the degree sequence.

Q 46: Test whether $[6,6,5,4,3,3,1]$ is graphic.

Give an example of a complete graph with 5 vertices.

Give an example of a 3-regular graph.

Give an example of a bipartite graph with 6 vertices

Give 2 examples of complete bipartite graphs with 5 vertices

