
The median for this midterm was 72.25. This isn’t bad considering how many of
you did not know definitions. I expect grades to improve on the final exam if you
learn definitions (make flashcards) and follow (proof) writing advice. Note I do take
improvement into consideration as discussed in class and on ICON.

It is easy to make (false) assumptions. What you learn in this and other math classes
will hopefully help you make fewer assumptions and to be more precise. The final exam
will have a similar format to this midterm, so that you can do extra problems in case
you make an incorrect assumption in other problem(s).

Description of grading scheme and advice for final exam (and HW, quizzes, etc).

For problem #2, I did allow many/most of you to get away with very poor writing. You
should keep in mind that other professors as well as the real world may grade you more
harshly. Poor writing can result in costly misunderstandings, so working on improving
your writing skills (both English and Math) is highly recommended. But for this class,
we will try to grade your English gently (but if we can’t infer what you mean, we can’t
give you points).

For definitions, you must be complete and precise. You can use English and/or math
notation, but your definition must be accurate. Thus I recommend flash cards for
definitions. As you go through the flash cards, think about examples as well as various
parts of the definition and why the parts are included in the definition.

If you don’t know definitions, you will likely make mistakes in proofs and in modeling.
Knowing definitions gives you more tools to model real life problems.

Note for problems 3 and 4, knowing definitions and theorems can be very helpful when
creating examples. For problem 3, some of you gave an example of two non-isomorphic
graphs that satisfied your incorrect definition of isomorphic (if two graphs have the
same degree sequence, then there exists a bijection between the vertices and between
the edges of the two graphs).

For problem 5, note I gave 2 proofs. The second proof uses more notations for describing
a walk and thus might be easier to write/read.

I also gave 2 proofs for problem 6, the induction proof. Note you could earn more than
half the points, by proving a base case, stating the induction hypothesis, and starting
the proof that S(m) implies S(m+1) for proof 1 or S(≤m) implies S(m+1) for proof 2.
Note that a graph needs to be connected in order to apply the induction hypothesis.
For more on induction proofs, please see

http://homepage.divms.uiowa.edu/ idarcy/COURSES/4060/induction cycle.pdf

Note the last problem, #7, was the “easiest” as it followed from definitions (and if you
forgot the precise definition for k-vertex colorable, you could modify the definition of
k-edge colorable).









4.) Define: The chromatic number, x(G) = min{k I G is k-vertex colorable }. 

Give an example of a non-planar graph, G, with "'(G) = 1, ).(G) = 2, 
�(G) = 5, and x(G) = 2. Justify your answer. Note if your example does not 
satisfy all the requested conditions, please state which conditions are missing for part
ial credit. 

x( G) = 2 implies G is bipartite. We want a bipartite non-planar graph. Note K3 ,3 is 
a non-planar and bipartite (alternatively, could try a subdivision of K5 or K3,3 ). 

If we start with K3,3 we can add two new neighbors to one of the vertices, v to create a 
graph with �( G) = 5. 

"'(K3,3) = 3 and ,\(K3,3) = 3, so will try to make v a cut vertex of G. 

Since ,\( G) = 2, every pair of vertices should lie on a cycle. Since G is bipartite, all 
cycles have even length. Thus we can put the new neighbors of w on a cycle of length 

4 (alternatively, one can let G be a multi-graph · . 
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5.) Define: A directed path between vertices u and v is a directed walk between
vertices u and v where no vertex is repeated.

I.e, ∃ a sequence of vertices u = u1, u2, ..., un−1, un = v such that < −−−−−→ui, ui+1 > is an
edge in the digraph ∀i = 1, ..., n− 1. and ui ̸= uj∀i ̸= j.

I.e, ∃ a sequence alternating between vertices and edges in the digraph such that u =
u1, < −−−→u1, u2 >, u2, < −−−→u3, u4 >, ..., un−1, < −−−−−→un−1, un >, un = v such that ui ̸= uj∀i ̸= j.

Prove that if there is a directed walk between vertices u and v, then there is a directed
path between vertices u and v.

Note: This is similar but not the same as HW problem where you had to find a
path which is a portion of the walk. You can modify the proof below to include this
restriction by applying it to the subgraph which consists of only the vertices and arcs
in the directed walk between vertices u and v.

Proof: Let w0, w1, ..., wk−1, wk be a shortest directed walk between u and v where
w0 = u and wk = v. Note a shortest directed walk exists between u and v since we
know that there is a directed walk between u and v.

Suppose w0, w1, ..., wk−1, wk is not a path. Then ∃i, j such that i < j and wi = wj (i.e,
the walk encounters the same vertex twice).
Since wi = wj , < −−−−−→wi, wj+1 > = < −−−−−→wj , wj+1 > is an edge in the digraph.

Then w0, w1, ..., wi, wj+1, wk−1, wk is a shorter directed walk between u and v, contrad-
icting that w0, w1, ..., wk−1, wk is a shortest directed walk between u and v

Note: there can be more than 1 shortest path between vertices, so I used “a” shortest
instead of “the” shortest.

Alternate proof Note sometimes using more notation can be helpful. In the proof
below, it is more obvious that we didn’t accidently include an “arc” that doesn’t actually
exist in our shortened walk.

Let w0, < −−−−→w0, w1 >,w1, ..., wk−1, < −−−−−−→wk−1, wk >,wk be a shortest directed walk between
u and v where w0 = u and wk = v. Note a shortest directed walk exists between u and
v since we know that there is a directed walk between u and v.

Suppose w0, < −−−−→w0, w1 >,w1, ..., wk−1, < −−−−−−→wk−1, wk >,wk is not a path. Then ∃i, j such
that i < j and wi = wj (i.e, the walk encounters the same vertex twice).

Since wi = wj , < −−−−−→wi, wj+1 > = < −−−−−→wj , wj+1 > is an edge in the digraph.

Thus w0, < −−−−→w0, w1 >,w1, ..., wi, < −−−−−→wj , wj+1 >,wj+1, ..., wk−1, < −−−−−−→wk−1, wk >,wk is a
shorter directed walk between u and v, contradicting that w0, w1, ..., wk−1, wk is a
shortest directed walk between u and v



6.) Define: T is a subgraph of G if

V (T ) ⊂ V (G), E(T ) ⊂ E(G), and {v | ∃ < u, v >∈ E(T )} ⊂ V (T ) (i.e., the endpoints
of edges in T are vertices in T ).

Let G be a simple connected graph. Use induction on |E(G)| to prove that G contains
a subgraph T where T is a tree and V (T ) = V (G).

Proof by induction on |E(G)|:

Base case:

Suppose |E(G)| = 0. Since G is a connected graph with no edges, G = ({v}, ∅) = K1.
Let T = G.

Induction hypothesis: Suppose that if G is a simple connected graph with |E(G)| = k,
then G contains a subgraph T where T is a tree and V (T ) = V (G).

Let G be a simple connected graph with |E(G)| = k + 1.

Claim: G contains a subgraph T where T is a tree and V (T ) = V (G).

Case 1: If G is a tree, then let T = G. Then V (T ) = V (G)

Case 2: G is not a tree. Thus G contains a cycle. Let e be an edge in this cycle. Then
e is not a cut-edge (bridge).

Thus G′ = G − e is a simple connected graph with k edges. Thus by the induction
hypothesis, G′ contains a subgraph T where T is a tree and V (T ) = V (G′).

Since G′ = G− e, V (G) = V (G′) = V (T ). Thus T is a subgraph of G where T is a tree
and V (T ) = V (G). Thus the claim holds.

Alternative induction proof.

Proof by induction on |E(G)|:

Base case:

Suppose |E(G)| = 0. Since G is a connected graph with no edges, G = ({v}, ∅) = K1.
Let T = G.

Induction hypothesis: Suppose that if G is a simple connected graph with |E(G)| <
k + 1, then G contains a subgraph T where T is a tree and V (T ) = V (G).

Let G be a simple connected graph with |E(G)| = k + 1.

Claim: G contains a subgraph T where T is a tree and V (T ) = V (G).



Let e ∈ E(G) and let G′ = G− e. Note G′ = G− e is a simple graph with k edges.

Case 1: G′ is connected.

Thus G′ = G − e is a simple connected graph with k edges. Thus by the induction
hypothesis, G′ contains a subgraph T where T is a tree and V (T ) = V (G′).

Since G′ = G− e, V (G) = V (G′) = V (T ). Thus T is a subgraph of G where T is a tree
and V (T ) = V (G). Thus the claim holds.

Case 2: G′ is not connected. Then G′ has 2 connected components, G1 and G2.

|E(Gi)| < E(G′) = k. Thus by the induction hypothesis, Gi contains a subgraph Ti

where Ti is a tree and V (Ti) = V (Gi).

Let T = (V (T1)∪V (T2), E(T1)∪E(T2)∪{e}) – i.e, create T from T1 and T2 by adding
in the edge e.

Note V (T ) = V (T1) ∪ V (T2) = V (G′) = V (G). Note T is connected since T1 and T2

are connected and all vertices in T1 are reachable from all vertices in T2 via a path that
goes through e. T is also a tree since T1 and T2 are trees and e is a bridge. Thus T is
a subgraph of G where T is a tree and V (T ) = V (G). Thus the claim holds.



7.) Define: G is k−vertex colorable if V (G) = V1∪V2∪ ...∪Vk where Vi∩Vj = ∅ ∀i ̸= j
and if 2 vertices v, v′ ∈ Vℓ for some ℓ ∈ {1, ..., k}, then v and v′ are not adjacent.

A graph H is k−edge colorable if E(H) = E1 ∪E2 ∪ ... ∪Ek where Ei ∩Ej = ∅ ∀i ̸= j
and if 2 edges e, e′ ∈ Eℓ for some ℓ ∈ {1, ..., k}, then e and e′ are not incident to the
same vertex.

Let G be a simple connected graph. Show that G is k−edge colorable if and only if its
line graph L(G) is k−vertex colorable.

Proof: Let L = L(G). If E(G) = {e1, ..., em}, then V (L) = {e′1, ..., e′m}, where e′p is
the vertex in L corresponding to the edge ep in G. Also, < e′i, e

′
j >∈ E(L) if and only

if ei, ej are incident to the same vertex in G.

(⇒) Suppose G is k−edge colorable. Then E(G) = E1∪E2∪ ...∪Ek where Ei∩Ej = ∅
∀i ̸= j and if 2 edges d, e ∈ Eℓ for some ℓ ∈ {1, ..., k}, then d and e are not incident to
the same vertex.

Let E′
i = {e′j ∈ V (L) | ej ∈ Ei}. Thus V (L) = E′

1 ∪ E′
2 ∪ ... ∪ E′

k where E′
i ∩ E′

j = ∅
∀i ̸= j.

Suppose in L, the vertices e′i, e
′
j ∈ E′

ℓ for some ℓ ∈ {1, ..., k}. Then their corresponding
edges in G, ei, ej are in Eℓ and thus are not incident to the same vertex in G. Thus
< e′i, e

′
j ≯∈ E(L). Thus in L, the vertices e′i, e

′
j are not adjacent and E′

1 ∪E′
2 ∪ ...∪E′

k

is a proper k-coloring of L. Hence L is k−vertex colorable.

(⇐) Suppose L is k−vertex colorable. Then V (L) = E′
1∪E′

2∪...∪E′
k where E′

i∩E′
j = ∅

∀i ̸= j and if 2 vertices v, w ∈ Eℓ for some ℓ ∈ {1, ..., k}, then v and w are not adjacent.

Let Ei = {ej ∈ E(G) | e′j ∈ E′
i}. Thus E(G) = E1 ∪ E2 ∪ ... ∪ Ek where Ei ∩ Ej = ∅

∀i ̸= j.

Suppose in G, the edges ei, ej ∈ Eℓ for some ℓ ∈ {1, ..., k}. Then their corresponding
vertices in L, e′i and e′j are in E′

ℓ and thus are not adjacent in L. Thus ei, ej ∈ E(G)
are not incident to the same vertex in G. . Hence G is k−edge colorable.

Note: One can instead use ei to represent edges in G as well as vertices in L, but you
also must be careful to be clear when ei is an edge and when ei is a vertex.

Alternative proof: Let L = L(G). Then E(G) = {e1, ..., em} = V (L), Also,
< ei, ej >∈ E(L) if and only if the edges ei, ej are incident to the same vertex in
G. Thus < ei, ej > ̸∈ E(L) if and only if ei, ej are not incident to the same vertex in G.

G is k−edge colorable ⇔ E(G) = E1 ∪E2 ∪ ... ∪Ek where Ei ∩Ej = ∅ ∀i ̸= j and if 2
edges d, e ∈ Eℓ for some ℓ ∈ {1, ..., k}, then d and e are not incident to the same vertex
in G. ⇔ V (L) = E1 ∪E2 ∪ ...∪Ek where Ei ∩Ej = ∅ ∀i ̸= j and if 2 vertices d, e ∈ Eℓ

for some ℓ ∈ {1, ..., k}, then < d, e > ̸∈ E(L) ⇔ L is k−vertex colorable.




