Thm 4.6: Let G be a graph with n vertices. Suppose also that \exists non-adjacent vertices u and w such that $\delta(u) + \delta(w) \ge n$.

Then G is Hamiltonian $\iff G + \langle u, w \rangle$ is Hamiltonian.

Proof (\Rightarrow) A Hamiltonian cycle in G is also a Hamiltonian cycle in $G + \langle u, w \rangle$.

(\Leftarrow) Suppose $G + \langle u, w \rangle$ is Hamiltonian.

Proof by contradiction: Suppose G is not Hamiltonian.

Thus the Hamiltonian cycle in $G + \langle u, w \rangle$ must contain the edge $\langle u, w \rangle$ (else this cycle would be a Hamiltonian cycle in G).

Thus we can write the Hamiltonian cycle as

 $u, w, v_1, v_2, \ldots, v_{n-2}, u$

Suppose $\langle u, v_{i-1} \rangle$ and $\langle w, v_i \rangle$ are both edges in G. Then $w, v_i, \dots, v_{n-2}, u, v_{i-1}, v_{i-2}, \dots, v_1, w$ is a Hamiltonian cycle in G, a contradiction. Thus $\langle u, v_{i-1} \rangle \in E(G)$ implies $\langle w, v_i \rangle \notin E(G)$.

Suppose in G, $\delta(u) = k$, then $\delta(w) \leq$

Thus in G, $\delta(u) + \delta(w) \le$

Defin 4.3: If V(G) = n, the **closure** of G is the graph obtained from G by iteratively adding edges to G joining non-adjacent vertices u and w where $\delta(u) + \delta(w) \ge n$.

To create the closure of G, create the sequence

$$G_0 = G, \ G_1 = G_0 + \langle u_0, w_0 \rangle, \dots,$$

 $G_k = G_{k-1} + \langle u_{k-1}, w_{k-1} \rangle$

where $\langle u_i, w_i \rangle \notin G_i$ and $\delta(u_i) + \delta(w_i) \ge n$ in G_i .

Moreover if
$$\delta(u) + \delta(w) \ge n$$
 in G_k ,
then $\langle u, w \rangle \in G_k$.

Thm 4.7: A simple graph is Hamiltonian if and only if its closure is Hamiltonian.

Thm (Ore 1960).

If G is a simple graph with $|V(G)| = n \ge 3$ and if \forall non-adjacent vertices u and w, $\delta(u) + \delta(w) \ge n$.

Then G is Hamiltonian.

Proof: The closure of G is and is Hamiltonian.

Corollary 4.5: If G is a simple graph with $|V(G)| = n \ge 3$ and each vertex v has degree $\delta(v) \ge \frac{n}{2}$, then G is Hamiltonian.