Math 4060 Mini-exam 1 Feb 13, 2019 SHOW ALL WORK
1.) Calculate the following for the graph below:

[10] 1a ) $\delta(A)=\underline{3} \quad N(A)=\underline{\{B, C, D\}} \quad \kappa(G)=\underline{3} \quad \lambda(G)=\underline{3}$
[4] 1b) The degree sequence for $G$ is $[4,3,3,3,3]$
[4] 1c) The adjacency matrix of $G$ is

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

[4] 1d) Draw, $\bar{G}=$ the complement of $G$ :

[4] 1e) Draw, $L(G)=$ the line graph of $G$ :

[14] 2.) Choose 2 from the following 3 problems. Clearly indicate your choices. You may attempt all problems for additional partial credit as discussed in class.

2a.) Give an example of a planar graph, $G$, with 5 vertices that contains an Eulerian circuit where $\kappa(G)=1$ and $\lambda(G)=2$.

What is the Eulerian circuit? $A B C D E C A$ or $B C D E C A B$ or ...
A minimal vertex cut for $G$ is $\qquad$
$\{C\}$
A minimal edge cut for $G$ is $\{\langle A, B\rangle,<A, C\rangle\}$ or $\{<A, B\rangle,<B, C\rangle\}$

$$
\text { or }\{<D, E>,<D, C>\} \text { or }\{<E, D>,<E, C>\}
$$



2b.) Give an example of non-planar graph with 7 vertices.


Or subdivide $K_{5}$, adding 2 vertices (splitting 2 edges or 1 edge twice).
2c.) Give an example of two non-isomorphic graphs with degree sequence [ $3,2,2,2,1$ ] where one of the graphs is bipartite while the other is not bipartite.


Note the 2nd graph is obtained using the Havel-Hakimi algorithm.
[10] 3.) Choose 1 from the following 2 problems. Clearly indicate your choice. You may attempt both problems for additional partial credit as discussed in class.

3a.) Prove that the following 2 graphs are isomorphic. Hint: Start the proof by labeling the vertices.


Proof: Two graphs $G_{1}$ and $G_{2}$ are isomorphic if $\exists$ a bijection $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that $f$ induces a bijection $f: E\left(G_{1}\right) \rightarrow E\left(G_{2}\right), f(<u, v>)=\langle f(u), f(v)\rangle$

Alternatively, two graphs $G_{1}$ and $G_{2}$ are isomorphic if $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|$, $\left|E\left(G_{1}\right)\right|=\left|E\left(G_{2}\right)\right|$, and $\exists$ an injective map $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that $f$ induces a map $f: E\left(G_{1}\right) \rightarrow E\left(G_{2}\right), f(<u, v>)=<f(u), f(v)>$

Define $f: G_{1} \rightarrow G_{2}$ by $f\left(a_{i}\right)=c_{i}$ and $\left.f(\langle u, v\rangle)=<f(u), f(v)\right\rangle$
Note that $f\left(<a_{1}, a_{i}>\right)=<c_{1}, c_{i}>$ for $i=2,3,5$
Also, $f\left(<a_{4}, a_{i}>\right)=<c_{4}, c_{i}>$ for $i=2,3$
Moreover, $f\left(<a_{5}, a_{i}>\right)=<c_{5}, c_{i}>$ for $i=2,3$

Alternate proof: Note the adjacency matrix of $G_{1}$ is the same as the adjacency matrix of $G_{2}$.

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

3b.) Prove that a graph $G=(V, E)$ where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is bipartite if and only if the vertices can be ordered so that the adjacency matrix is of the form $\left(\begin{array}{cc}0_{k \times k} & A \\ B & 0_{\ell \times \ell}\end{array}\right)$ where $0_{m \times m}$ is an $m \times m$ matrix whose entries are all 0 .

## Proof: ( $\Rightarrow$ )

Suppose $G$ is bipartite. Then $V(G)=U \cup W$ where $U \cap W=\emptyset$ and

$$
E(G) \subset\{<u, w>\mid u \in U, w \in W\}
$$

Let $k=|U|$
Order $V(G)=\left\{v_{1}, \ldots v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ where $v_{i} \in U$ if $i \leq k$ and $v_{i} \in W$ if $i>k$.
Let $A$ be the adjacency matrix of $G$ where $a_{i j}= \begin{cases}1 & \text { if }<v_{i}, v_{j}>\in E(G) \\ 0 & \text { else }\end{cases}$
Note $a_{i j}=0$ for $i, j \leq k$ since $v_{i}, v_{j} \in U$ when $i, j \leq k$
Note $a_{i j}=0$ for $i, j>k$ since $v_{i}, v_{j} \in W$ when $i, j>k$
Thus $A=\left(\begin{array}{cc}0_{k \times k} & A \\ B & 0_{\ell \times \ell}\end{array}\right)$
$(\Leftarrow)$ Suppose the adjacency matrix of $G$ is $A=\left(\begin{array}{cc}0_{k \times k} & A \\ B & 0_{\ell \times \ell}\end{array}\right)$.
Let $V(G)=\left\{v_{1}, \ldots v_{k}, v_{k+1}, \ldots, v_{n}\right\}$, so that the subscripts correspond to the rows (or equivalently columns) of $A$.

Recall $G$ is bipartite if $\exists U, V$ such that $V(G)=U \cup W$ where $U \cap W=\emptyset$ and $E(G) \subset\{\langle u, w\rangle \mid u \in U, w \in W\}$

Let $U=\left\{v_{1}, \ldots v_{k}\right\}$ and $W=\left\{v_{k+1}, \ldots, v_{n}\right\}$
Let $<x, y>\in E(G)$. Then since $a_{i j}=0$ for $i, j \leq k, a_{i j}=0$ for $i, j>k$, then either $x \in U$ and $y \in W$ or $y \in U$ and $x \in W$.

Since $\langle x, y>=<y, x\rangle$, WLOG assume $x \in U$ and $y \in W$.
Thus $E(G) \subset\{<u, w\rangle \mid u \in U, w \in W\}$.
Therefore $G$ is bipartite.

