1.) Calculate the following for the graph below:

$$[10] 1a) \delta(A) = \underline{3} \qquad N(A) = \underline{\{B, C, D\}} \qquad \kappa(G) = \underline{3} \qquad \lambda(G) = \underline{$$

[4] 1b) The degree sequence for G is [4, 3, 3, 3, 3]

[4] 1c) The adjacency matrix of G is

$\sqrt{0}$	1	1	1	0
1	0	1	0	1
1	1	0	1	1
1	0	1	0	1
$\sqrt{0}$	1	1	1	0/

[4] 1d) Draw, \overline{G} = the complement of G:

[4] 1e) Draw, L(G) = the line graph of G:

[14] 2.) Choose **2** from the following 3 problems. Clearly indicate your choices. You may attempt all problems for additional partial credit as discussed in class.

2a.) Give an example of a planar graph, G, with 5 vertices that contains an Eulerian circuit where $\kappa(G) = 1$ and $\lambda(G) = 2$.

What is the Eulerian circuit? <u>ABCDECA or BCDECAB or ...</u>

2b.) Give an example of non-planar graph with 7 vertices.

Or subdivide K_5 , adding 2 vertices (splitting 2 edges or 1 edge twice).

2c.) Give an example of two non-isomorphic graphs with degree sequence [3, 2, 2, 2, 1] where one of the graphs is bipartite while the other is not bipartite.

Note the 2nd graph is obtained using the Havel-Hakimi algorithm.

[10] 3.) Choose 1 from the following 2 problems. Clearly indicate your choice. You may attempt both problems for additional partial credit as discussed in class.

3a.) Prove that the following 2 graphs are isomorphic. Hint: Start the proof by labeling the vertices.

Proof: Two graphs G_1 and G_2 are isomorphic if \exists a bijection $f: V(G_1) \to V(G_2)$ such that f induces a bijection $f: E(G_1) \to E(G_2), f(\langle u, v \rangle) = \langle f(u), f(v) \rangle$

Alternatively, two graphs G_1 and G_2 are isomorphic if $|V(G_1)| = |V(G_2)|$, $|E(G_1)| = |E(G_2)|$, and \exists an injective map $f: V(G_1) \to V(G_2)$ such that f induces a map $f: E(G_1) \to E(G_2)$, $f(\langle u, v \rangle) = \langle f(u), f(v) \rangle$

Define $f: G_1 \to G_2$ by $f(a_i) = c_i$ and $f(\langle u, v \rangle) = \langle f(u), f(v) \rangle$

Note that $f(\langle a_1, a_i \rangle) = \langle c_1, c_i \rangle$ for i = 2, 3, 5

Also, $f(\langle a_4, a_i \rangle) = \langle c_4, c_i \rangle$ for i = 2, 3

Moreover, $f(\langle a_5, a_i \rangle) = \langle c_5, c_i \rangle$ for i = 2, 3

Alternate proof: Note the adjacency matrix of G_1 is the same as the adjacency matrix of G_2 .

0	1	1	0	1
1	0	0	1	1
1	0	0	1	1
0	1	1	0	0
$\backslash 1$	1	1	0	0/

3b.) Prove that a graph G = (V, E) where $V = \{v_1, ..., v_n\}$ is bipartite if and only if the vertices can be ordered so that the adjacency matrix is of the form $\begin{pmatrix} 0_{k \times k} & A \\ B & 0_{\ell \times \ell} \end{pmatrix}$ where $0_{m \times m}$ is an $m \times m$ matrix whose entries are all 0.

Proof: (\Rightarrow)

Suppose G is bipartite. Then $V(G) = U \cup W$ where $U \cap W = \emptyset$ and $E(G) \subset \{ < u, w > | u \in U, w \in W \}$

Let k = |U|

Order
$$V(G) = \{v_1, ..., v_k, v_{k+1}, ..., v_n\}$$
 where $v_i \in U$ if $i \le k$ and $v_i \in W$ if $i > k$.

Let A be the adjacency matrix of G where $a_{ij} = \begin{cases} 1 & \text{if } < v_i, v_j > \in E(G) \\ 0 & \text{else} \end{cases}$

Note $a_{ij} = 0$ for $i, j \leq k$ since $v_i, v_j \in U$ when $i, j \leq k$

Note $a_{ij} = 0$ for i, j > k since $v_i, v_j \in W$ when i, j > k

Thus
$$A = \begin{pmatrix} 0_{k \times k} & A \\ B & 0_{\ell \times \ell} \end{pmatrix}$$

(⇐) Suppose the adjacency matrix of G is $A = \begin{pmatrix} 0_{k \times k} & A \\ B & 0_{\ell \times \ell} \end{pmatrix}$.

Let $V(G) = \{v_1, ..., v_k, v_{k+1}, ..., v_n\}$, so that the subscripts correspond to the rows (or equivalently columns) of A.

Recall G is bipartite if $\exists U, V$ such that $V(G) = U \cup W$ where $U \cap W = \emptyset$ and $E(G) \subset \{ \langle u, w \rangle \mid u \in U, w \in W \}$

Let $U = \{v_1, ..., v_k\}$ and $W = \{v_{k+1}, ..., v_n\}$

Let $\langle x, y \rangle \in E(G)$. Then since $a_{ij} = 0$ for $i, j \leq k$, $a_{ij} = 0$ for i, j > k, then either $x \in U$ and $y \in W$ or $y \in U$ and $x \in W$.

Since $\langle x, y \rangle = \langle y, x \rangle$, WLOG assume $x \in U$ and $y \in W$.

Thus $E(G) \subset \{ \langle u, w \rangle \mid u \in U, w \in W \}.$

Therefore G is bipartite.