Let G be a connected graph.

If G =, then $\lambda(G) =$

In all other cases:

 $\lambda(G)$ = the size of a minimal edge cut

= the minimum number of edges one can remove such that the resulting subgraph is disconnected.

Thm 2.4: $\lambda(G) \le \min\{\delta(v) \mid v \in V(G)\}$

Choose $w \in V(G)$ such that $\delta(w) \leq \delta(v)$ for all $v \in V(G)$.

I.e., choose $w \in V(G)$ such that $\delta(w) = \min\{\delta(v) \mid v \in V(G)\}$

Case 1:

Case 2: Let $E^* = \{e \mid e \text{ is incident to } w\}$

$$= \{ < w, v > | < w, v > \in E(G) \}$$
$$= \{ < w, v > | v \in N(w) \}$$

 $= \text{the set of all edges having } w \text{ as one} \\ \text{of its vertices.}$

Note $|E^*| = \delta(w)$.

Note $(\{w\}, \emptyset)$ is a component of $G - E^*$.

Thus $G - E^*$ is disconnected since

G = (V, E) is k-edge-connected if removing any set of k - 1 edges in G does not disconnect it and $|V| \ge 2$.

k edge connected implies k-1 edge connected if k>1

connected = 1-edge connected

$$\lambda(G) = \text{edge connectivity of } G$$
$$= max\{k \mid G \text{ k-edge-connected }\}$$