Let G be a connected graph.
If $G=\quad=\quad$, then $\lambda(G)=$
In all other cases:
$\lambda(G)=$ the size of a minimal edge cut
$=$ the minimum number of edges one can remove such that the resulting subgraph is disconnected.

Thm 2.4: $\lambda(G) \leq \min \{\delta(v) \mid v \in V(G)\}$
Choose $w \in V(G)$ such that

$$
\delta(w) \leq \delta(v) \text { for all } v \in V(G) .
$$

I.e., choose $w \in V(G)$ such that

$$
\delta(w)=\min \{\delta(v) \mid v \in V(G)\}
$$

Case 1:

Case 2: Let $E^{*}=\{e \mid e$ is incident to $w\}$

$$
\begin{aligned}
& =\{\langle w, v>|<w, v>\in E(G)\} \\
& =\{<w, v>\mid v \in N(w)\} \\
& =\text { the set of all edges having } w \text { as one } \\
& \quad \text { of its vertices. }
\end{aligned}
$$

Note $\left|E^{*}\right|=\delta(w)$.
Note $(\{w\}, \emptyset)$ is a component of $G-E^{*}$.
Thus $G-E^{*}$ is disconnected since
$G=(V, E)$ is k-edge-connected if removing any set of $k-1$ edges in G does not disconnect it and $|V| \geq 2$.
k edge connected implies $k-1$ edge connected if $k>1$
connected $=1$-edge connected
$\lambda(G)=$ edge connectivity of G

$$
=\max \{k \mid G k \text {-edge-connected }\}
$$

