Let G be a connected graph.

If G =, then $\kappa(G) =$

In all other cases:

 $\kappa(G)$ = the size of a minimal vertex cut

= the minimum number of vertices one can remove such that the resulting subgraph is disconnected.

Thm 2.4: $\kappa(G) \le \lambda(G) \le \min\{\delta(v) \mid v \in V(G)\}$

Case 1: Suppose $G = K_n$, then $\kappa(G) = -\lambda(G)$

Case 2: Let G be a graph such that $\lambda(G) = k$

Let $E^* = \{e_1, e_2, ..., e_k\}$ be a minimal edge cut of G.

Claim: $G - E^* = G_1 \cup G_2$ where G_i , i = 1, 2 are the connected components of $G - E^*$.

Claim:
$$e_i = \langle u_i, v_i \rangle$$
 where
 $u_i \in V(G_1)$ and $v_i \in V(G_2)$ for $i = 1, ..., k$.
Let $U^* = \{u_1, ..., u_k\} \subset V(G_1)$. Note $|U^*| \le k$.
Let $V^* = \{v_1, ..., v_k\} \subset V(G_2)$. Note $|V^*| \le k$.

Case 2a: $\exists u \in V(G_1)$ such that $u \notin \{u_1, ..., u_k\}$. Claim: u is not connected to v_1 in $G - U^*$. Thus $G - U^*$ is disconnected and hence U^* is a vertex cut for G. Therefore $\kappa(G) \leq k = \lambda(G)$. Case 2b: $\exists v \in V(G_2)$ such that $v \notin \{v_1, ..., v_k\}$. Claim: v is not connected to u_1 in $G - V^*$.

Thus $G - V^*$ is disconnected and hence V^* is a vertex cut for G. Therefore $\kappa(G) \leq k = \lambda(G)$.

Case 2c:
$$V(G_1) = U^* = \{u_1, ..., u_k\}$$
 and $V(G_2) = V^* = \{v_1, ..., v_k\}.$

Since G is not a complete graph,

$$\exists x, y \in V(G) = \{u_1, ..., u_k, v_1, ..., v_k\}$$

such that $\langle x, y \rangle \notin E(G)$.

WLOG assume $x = u_1$.

Let
$$N(u_1) = \{u_{i_1}, ..., u_{i_\ell}, v_{j_1}, ..., e_{j_m}\}$$

where $u_{i_s} \in U^*$ and $v_{j_t} \in V^* \ \forall s, t.$

Note $x = u_1$ is not connected to y in $G - N(u_1)$. Thus $N(u_1)$ is a vertex cut for G.

Claim
$$|N(u_1)| = \delta(u_1) \leq k$$
.
Define $f : N(u_1) \rightarrow E^*$ by
 $f(v_{j_t}) = \langle u_1, v_{j_t} \rangle$ and
 $f(u_{i_s}) = \langle u_{i_s}, v_p \rangle$
where $p = \min\{j \mid v_j \text{ is adjacent to } u_{i_s}\}$
Note f is a well-defined 1:1 function.
Thus $|N(u_1)| \leq |E^*|$.

G = (V, E) is k-connected if removing any set of k-1 vertices in G does not disconnect it and $G \neq K_n$ is -connected.

k connected implies k-1 connected if k>1

connected = 1-connected

 $\kappa(G) = \text{connectivity of } G = max\{k \mid G \mid k-connected\}$