Let G be a connected graph.

If $G=$
$=\quad$, then $\kappa(G)=$
In all other cases:
$\kappa(G)=$ the size of a minimal vertex cut
$=$ the minimum number of vertices one can remove such that the resulting subgraph is disconnected.

Thm 2.4: $\kappa(G) \leq \lambda(G) \leq \min \{\delta(v) \mid v \in V(G)\}$
Case 1: Suppose $G=K_{n}$, then $\kappa(G)=\quad=\lambda(G)$
Case 2: Let G be a graph such that $\lambda(G)=k$
Let $E^{*}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be a minimal edge cut of G.
Claim: $G-E^{*}=G_{1} \cup G_{2}$ where $G_{i}, i=1,2$ are the connected components of $G-E^{*}$.

Claim: $e_{i}=<u_{i}, v_{i}>$ where

$$
u_{i} \in V\left(G_{1}\right) \text { and } v_{i} \in V\left(G_{2}\right) \text { for } i=1, \ldots, k
$$

Let $U^{*}=\left\{u_{1}, \ldots, u_{k}\right\} \subset V\left(G_{1}\right) . \quad$ Note $\left|U^{*}\right| \leq k$.
Let $V^{*}=\left\{v_{1}, \ldots, v_{k}\right\} \subset V\left(G_{2}\right) . \quad$ Note $\left|V^{*}\right| \leq k$.

Case 2a: $\exists u \in V\left(G_{1}\right)$ such that $u \notin\left\{u_{1}, \ldots, u_{k}\right\}$.
Claim: u is not connected to v_{1} in $G-U^{*}$.
Thus $G-U^{*}$ is disconnected and hence U^{*} is a vertex cut for G. Therefore $\kappa(G) \leq k=\lambda(G)$.

Case 2b: $\exists v \in V\left(G_{2}\right)$ such that $v \notin\left\{v_{1}, \ldots, v_{k}\right\}$.
Claim: v is not connected to u_{1} in $G-V^{*}$.
Thus $G-V^{*}$ is disconnected and hence V^{*} is a vertex cut for G. Therefore $\kappa(G) \leq k=\lambda(G)$.

Case 2c: $V\left(G_{1}\right)=U^{*}=\left\{u_{1}, \ldots, u_{k}\right\}$ and $V\left(G_{2}\right)=$ $V^{*}=\left\{v_{1}, \ldots, v_{k}\right\}$.

Since G is not a complete graph,

$$
\begin{aligned}
& \exists x, y \in V(G)=\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\} \\
& \quad \text { such that }<x, y>\notin E(G) .
\end{aligned}
$$

WLOG assume $x=u_{1}$.

$$
\begin{aligned}
\text { Let } N\left(u_{1}\right)= & \left\{u_{i_{1}}, \ldots, u_{i_{\ell}}, v_{j_{1}}, \ldots, e_{j_{m}}\right\} \\
& \text { where } u_{i_{s}} \in U^{*} \text { and } v_{j_{t}} \in V^{*} \forall s, t .
\end{aligned}
$$

Note $x=u_{1}$ is not connected to y in $G-N\left(u_{1}\right)$. Thus $N\left(u_{1}\right)$ is a vertex cut for G.

Claim $\left|N\left(u_{1}\right)\right|=\delta\left(u_{1}\right) \leq k$.
Define $f: N\left(u_{1}\right) \rightarrow E^{*}$ by

$$
\begin{aligned}
& f\left(v_{j_{t}}\right)=<u_{1}, v_{j_{t}}>\text { and } \\
& f\left(u_{i_{s}}\right)=<u_{i_{s}}, v_{p}> \\
& \quad \text { where } p=\min \left\{j \mid v_{j} \text { is adjacent to } u_{i_{s}}\right\}
\end{aligned}
$$

Note f is a well-defined $1: 1$ function.
Thus $\left|N\left(u_{1}\right)\right| \leq\left|E^{*}\right|$.
$G=(V, E)$ is k-connected if removing any set of $k-1$ vertices in G does not disconnect it and $G \neq$
K_{n} is -connected.
k connected implies $k-1$ connected if $k>1$
connected $=1$-connected
$\kappa(G)=$ connectivity of $G=\max \{k \mid G k-$ connected $\}$

