1.1, 1.2 Solving systems of linear equations.

Example: Solve

$$
\begin{gathered}
x+2 y+3 z=0 \\
2 x+5 y+5 z=4 \\
-x-3 y-2 z=-4
\end{gathered}
$$

\downarrow eqn $2-2$ eqn $1 \rightarrow$ eqn 2 ,
\downarrow eqn $3+$ eqn $1 \rightarrow$ eqn 3
$x+2 y+3 z=0$
$0 x+y-z=4$
$0 x-y+z=-4$
\downarrow eqn $3+$ eqn $2 \rightarrow$ eqn 3
$x+2 y+3 z=0$
$0 x+y-z=4$
$0 x+0 y+0 z=0$
\downarrow eqn $1-2$ eqn $2 \rightarrow$ eqn 1
$x+0 y+5 z=-8$
$0 x+y-z=4$

Thus $x=-8-5 z$

$$
\begin{aligned}
& y=4+z \\
& z=z \text { (i.e., } z \text { is free, } z \text { can be any real number). }
\end{aligned}
$$

System of Linear Equations:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\cdot \\
\cdot \\
\cdot \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

Coefficient Matrix:

Augmented Matrix Form:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
& & \cdot & \\
& & \cdot & \\
& & \cdot & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \quad\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
& & \cdot & & \\
& & \cdot & & \\
& & \cdot & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right]
$$

Elementary row operations:

$$
\begin{aligned}
R_{i} & \rightarrow c R_{i} \text { where } c \neq 0 \\
R_{i} & \leftrightarrow R_{j} \\
R_{i} & \rightarrow R_{i}+c R_{j}
\end{aligned}
$$

Two systems of equations are equivalent if they both have the same solution set.

If two augmented matrices are row-equivalent, the corresponding linear systems of equations are equivalent.

Methods of solving a system of linear equations:
1.) Put matrix in Echelon Form
2.) Put matrix in Reduced Echelon form

Echelon form (non-unique):

The leftmost nonzero element in each row is called a leading entry or pivot.
i.) In each column with a leading entry, all entries below the leading entry are zero.
ii.) Each leading entry of a row is to the left of the leading entry of any row below it.
iii.) All rows of all zeros are below all non-zero rows.
(Note in echelon form, I do not require that the leading entry equal 1)

The position of a leading entry is called the pivot position.
A pivot column is a column containing a leading entry.
The variable corresponding to a pivot column is called a basic variable.

Variables that do not correspond to a pivot column are called free variables.

Row-reduced echelon form (unique):

i.) The matrix is in echelon form.
ii.) The leading entries are all equal to 1 .
iii.) In each column with a leading entry, all other entries are zero.

REQUIRED METHOD:

To put a matrix in echelon form work from left to right.
To put a matrix in row-reduced echelon form:
i.) First put in echelon form (work from left to right).
ii.) Put into reduced echelon form (work from right to left).

You may take short-cuts, but if your method is longer than the above, you will be penalized grade-wise.

Every matrix can be transformed by a finite sequence of elementary row operations into one that is in row-reduced echelon form.

Echelon form is not unique, but row-reduced echelon form is unique.

A system of LINEAR equations can have
i.) No solutions (inconsistent)
ii.) Exactly one solution
iii.) Infinite number of solutions.

To solve a system of equations:
i.) Create augmented matrix.
ii.) Put matrix into EF.
iii.) Put into REF.
iv.) Solve.

Case 1: If pivot in last column of augmented matrix. Then system of equations has no solution.

Case 2: If no pivot in last column of augmented matrix:
a.) No free variables implies unique solution.
b.) Free variables imply an infinite number of solutions Solve for pivot column variables in terms of free variables.

$$
\begin{aligned}
& 3 x+6 y+9 z=0 \\
& 4 x+5 y+6 z=3 \\
& 7 x+8 y+9 z=0
\end{aligned}
$$

1.5: A system of equations is homogeneous if $b_{i}=0$ for all i.

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1 n} & 0 \\
a_{21} & a_{22} & \ldots & a_{2 n} & 0 \\
& & \cdot & & \\
& & \cdot & & \\
& & \cdot & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & 0
\end{array}\right]
$$

A homogeneous system of LINEAR equations can have
a.) Exactly one solution $(\mathbf{x}=\mathbf{0})$
b.) Infinite number of solutions (including, of course, $\mathbf{x}=\mathbf{0}$).

Solve:

$$
\begin{aligned}
& 3 x+6 y+9 z=b_{1} \\
& 4 x+5 y+6 z=b_{2} \\
& 7 x+8 y+9 z=b_{3}
\end{aligned}
$$

where 1a.) $b_{1}=0, b_{2}=0, b_{3}=0$

1b.) $b_{1}=0, b_{2}=3, b_{3}=0$

1c.) $b_{1}=6, b_{2}=5, b_{3}=8$
$\left[\begin{array}{llllll}3 & 6 & 9 & 0 & 0 & 6 \\ 4 & 5 & 6 & 0 & 3 & 5 \\ 7 & 8 & 9 & 0 & 0 & 8\end{array}\right]$
$\downarrow \frac{1}{3} R_{1} \rightarrow R_{1}$
$\left[\begin{array}{llllll}1 & 2 & 3 & 0 & 0 & 2 \\ 4 & 5 & 6 & 0 & 3 & 5 \\ 7 & 8 & 9 & 0 & 0 & 8\end{array}\right]$
$\downarrow R_{2}-4 R_{1} \rightarrow R_{2}, \quad R_{3}-7 R_{1} \rightarrow R_{3}$
$\left[\begin{array}{rrrrrr}1 & 2 & 3 & 0 & 0 & 2 \\ 0 & -3 & -6 & 0 & 3 & -3 \\ 0 & -6 & -12 & 0 & 0 & -6\end{array}\right]$
$\downarrow R_{3}-2 R_{1} \rightarrow R_{3}$
$\left[\begin{array}{rrrrrr}1 & 2 & 3 & 0 & 0 & 2 \\ 0 & -3 & -6 & 0 & 3 & -3 \\ 0 & 0 & 0 & 0 & -6 & 0\end{array}\right]$
\downarrow already know sol'n to system b.
$\left[\begin{array}{rrrrr}1 & 2 & 3 & 0 & 2 \\ 0 & -3 & -6 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\downarrow-\frac{1}{3} R_{2} \rightarrow R_{2}$
$\left[\begin{array}{ccccc}1 & 2 & 3 & 0 & 2 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \quad R_{1}-2 \overrightarrow{R_{2}} \rightarrow R_{1}$
$\left[\begin{array}{rrrrr}1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

