1.1, 1.2 Solving systems of linear equations.

Example: Solve

x + 2y + 3z = 0 2x + 5y + 5z = 4-x - 3y - 2z = -4

 $\downarrow \text{ eqn } 2 \text{ - } 2 \text{ eqn } 1 \rightarrow \text{ eqn } 2,$ $\downarrow \text{ eqn } 3 + \text{ eqn } 1 \rightarrow \text{ eqn } 3$

x + 2y + 3z = 0 0x + y - z = 40x - y + z = -4

 $\downarrow \text{eqn } 3 + \text{eqn } 2 \rightarrow \text{eqn } 3$

x + 2y + 3z = 0 0x + y - z = 40x + 0y + 0z = 0

 \downarrow eqn 1 - 2eqn 2 \rightarrow eqn 1

 $\begin{aligned} x + 0y + 5z &= -8\\ 0x + y - z &= 4 \end{aligned}$

Thus x = -8 - 5z y = 4 + zz = z (i.e., z is free, z can be any real number). System of Linear Equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Coefficient Matrix:

Augmented Matrix Form:

$ a_{11} $	a_{12}	•••	a_{1n}]	$ a_{11} $	a_{12}	•••	a_{1n}	b_1]
a_{21}	a_{22}	•••	a_{2n}		a_{21}	a_{22}	•••	a_{2n}	b_2
		•					•		
		•					•		
		•					•		
La_{m1}	a_{m2}	•••	a_{mn}		La_{m1}	a_{m2}	•••	a_{mn}	$b_m \rfloor$

Elementary row operations:

$$R_i \to cR_i$$
 where $c \neq 0$
 $R_i \leftrightarrow R_j$
 $R_i \to R_i + cR_j$

Two systems of equations are *equivalent* if they both have the same solution set.

If two augmented matrices are row-equivalent, the corresponding linear systems of equations are equivalent.

Methods of solving a system of linear equations:

- 1.) Put matrix in Echelon Form
- 2.) Put matrix in Reduced Echelon form

Echelon form (non-unique):

The leftmost nonzero element in each row is called a *leading entry* or *pivot*.

i.) In each column with a leading entry, all entries below the leading entry are zero.

ii.) Each leading entry of a row is to the left of the leading entry of any row below it.

iii.) All rows of all zeros are below all non-zero rows.

(Note in echelon form, I do not require that the leading entry equal 1)

The position of a leading entry is called the *pivot position*.

A *pivot column* is a column containing a leading entry.

The variable corresponding to a pivot column is called a *basic variable*.

Variables that do not correspond to a pivot column are called *free* variables.

Row-reduced echelon form (unique):

i.) The matrix is in echelon form.

ii.) The leading entries are all equal to 1.

iii.) In each column with a leading entry, all other entries are zero.

REQUIRED METHOD:

To put a matrix in echelon form work from left to right.

To put a matrix in row-reduced echelon form:

- i.) First put in echelon form (work from left to right).
- ii.) Put into reduced echelon form (work from right to left).

You may take short-cuts, but if your method is longer than the above, you will be penalized grade-wise.

Every matrix can be transformed by a finite sequence of elementary row operations into one that is in row-reduced echelon form.

Echelon form is not unique, but row-reduced echelon form is unique.

A system of LINEAR equations can have

- i.) No solutions (inconsistent)
- ii.) Exactly one solution
- iii.) Infinite number of solutions.

- To solve a system of equations:
- i.) Create augmented matrix.
- ii.) Put matrix into EF.
- iii.) Put into REF.
- iv.) Solve.

Case 1: If pivot in last column of augmented matrix. Then system of equations has **no solution**.

Case 2: If no pivot in last column of augmented matrix:

- a.) No free variables implies **unique solution**.
- b.) Free variables imply an **infinite number of solutions** Solve for pivot column variables in terms of free variables.

Solve:

$$3x + 6y + 9z = 0$$

 $4x + 5y + 6z = 3$
 $7x + 8y + 9z = 0$

1.5: A system of equations is **homogeneous** if $b_i = 0$ for all i.

 $\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 \\ & & \ddots & & & \\ & & \ddots & & & \\ & & a_{m1} & a_{m2} & \dots & a_{mn} & 0 \end{bmatrix}$

A homogeneous system of LINEAR equations can have

- a.) Exactly one solution $(\mathbf{x} = \mathbf{0})$
- b.) Infinite number of solutions (including, of course, $\mathbf{x} = \mathbf{0}$).

Solve: $3x + 6y + 9z = b_1$ $4x + 5y + 6z = b_2$ $7x + 8y + 9z = b_3$

where 1a.) $b_1 = 0, b_2 = 0, b_3 = 0$

1b.)
$$b_1 = 0, b_2 = 3, b_3 = 0$$

1c.) $b_1 = 6, b_2 = 5, b_3 = 8$

 $\begin{bmatrix} 3 & 6 & 9 & 0 & 0 & 6 \\ 4 & 5 & 6 & 0 & 3 & 5 \\ 7 & 8 & 9 & 0 & 0 & 8 \end{bmatrix}$ $\downarrow \frac{1}{3}R_1 \to R_1$ $\downarrow R_2 - 4R_1 \to R_2, \quad R_3 - 7R_1 \to R_3$ $\begin{vmatrix} 1 & 2 & 3 & 0 & 0 & 2 \\ 0 & -3 & -6 & 0 & 3 & -3 \\ 0 & -6 & -12 & 0 & 0 & -6 \end{vmatrix}$ $\downarrow R_3 - 2R_1 \rightarrow R_3$ $\begin{bmatrix} 1 & 2 & 3 & 0 & 0 & 2 \\ 0 & -3 & -6 & 0 & 3 & -3 \\ 0 & 0 & 0 & 0 & -6 & 0 \end{bmatrix}$ \downarrow already know sol'n to system b. $\downarrow -\frac{1}{3}R_2 \to R_2$ $\begin{vmatrix} 1 & 2 & 3 & 0 & 2 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{vmatrix} \qquad \xrightarrow{} R_1 - 2R_2 \to R_1$

$$\begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$