1.3 Vectors in R^{m}

Defn: $\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right), \mathbf{v}=\left(v_{1}, \ldots, v_{m}\right)$ are vectors in $\mathbf{R}^{\mathbf{m}}$.

Defn: u_{1}, \ldots, u_{m} are the components of \mathbf{u}.
Defn: $\mathbf{u}=\mathbf{v}$ if and only if $u_{i}=v_{i}$ for all i.
Defn: The zero vector in $\mathbf{R}^{\mathbf{m}}$ is the m -vector $\mathbf{0}=(0,0, \ldots, 0)$.

Vector Addition
Defn: The sum of \mathbf{u} and \mathbf{v} is the vector $\mathbf{u}+\mathbf{v}=\left(u_{1}+v_{1}, \ldots, u_{m}+v_{m}\right)$.

Defn: The negative of \mathbf{u} is the vector $-\mathbf{u}=\left(-u_{1}, \ldots,-u_{m}\right)$

Defn: The difference between \mathbf{u} and \mathbf{v} is the vector $\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})=\left(u_{1}-v_{1}, \ldots, u_{m}-v_{m}\right)$.

Defn: In this class a scalar, c, is a real number.
Defn: The scalar multiple of \mathbf{u} by c is the vector $c \mathbf{u}=\left(c u_{1}, \ldots, c u_{m}\right)$.

Thm: The vectors, \mathbf{u} and \mathbf{v}, are collinear iff there exists a scalar c such that $\mathbf{v}=c \mathbf{u}$. In this case
a.) if $c>0, \mathbf{u}$ and $c \mathbf{u}$ have the same direction.
b.) If $c<0, \mathbf{u}$ and $c \mathbf{u}$ have opposite directions.

Defn: The length (norm, magnitude) of \mathbf{u} is its distance from 0 and is denoted by

$$
\|\mathbf{u}\|=d(\mathbf{0}, \mathbf{u})=\sqrt{u_{1}^{2}+u_{2}^{2}+\ldots+u_{m}^{2}} .
$$

Two vectors are equivalent if they have the same】 direction and length.

Parallelogram rule:
Addition: the directed line segment starting at \mathbf{u} and ending at $\mathbf{u}+\mathbf{v}$ is equivalent to \mathbf{v}

Subtraction: the directed line segment starting at \mathbf{u} and ending at \mathbf{v} is equivalent to $\mathbf{v}-\mathbf{u}$

Note $\left[\begin{array}{c}x_{1} \\ \cdot \\ \cdot \\ \cdot \\ x_{n}\end{array}\right] \neq\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]$
However, we will sometimes abuse notation.

Thm 3.2.1 (or thm 4.1.1 p163)
a.) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
b.) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
c.) $\mathbf{u}+\mathbf{0}=\mathbf{u}$
d.) $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
e.) $(c d) \mathbf{u}=c(d \mathbf{u})$
f.) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
g.) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
h.) $\mathbf{1 u}=\mathbf{u}$

Sometimes we will write the vector \mathbf{x} as a row vector: $\left(x_{1}, \ldots, x_{n}\right)$.

Other times we will write the vector \mathbf{x} as a column vector:

$$
\left[\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]
$$

