1.3 Vectors in \mathbb{R}^m

Defn: $\mathbf{u} = (u_1, ..., u_m), \ \mathbf{v} = (v_1, ..., v_m)$ are **vectors** in $\mathbf{R}^{\mathbf{m}}$.

Defn: $u_1, ..., u_m$ are the **components** of **u**.

Defn: $\mathbf{u} = \mathbf{v}$ if and only if $u_i = v_i$ for all *i*.

Defn: The **zero vector** in $\mathbf{R}^{\mathbf{m}}$ is the m-vector $\mathbf{0} = (0, 0, ..., 0)$.

Vector Addition

Defn: The sum of **u** and **v** is the vector $\mathbf{u} + \mathbf{v} = (u_1 + v_1, ..., u_m + v_m).$

Defn: The **negative** of **u** is the vector $-\mathbf{u} = (-u_1, ..., -u_m)$

Defn: The **difference** between **u** and **v** is the vector $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = (u_1 - v_1, ..., u_m - v_m).$

Defn: In this class a scalar, c, is a real number.

Defn: The scalar multiple of \mathbf{u} by c is the vector $c\mathbf{u} = (cu_1, ..., cu_m)$.

Thm: The vectors, \mathbf{u} and \mathbf{v} , are collinear iff there exists a scalar c such that $\mathbf{v} = c\mathbf{u}$. In this case

a.) if c > 0, **u** and c**u** have the same direction.

b.) If c < 0, **u** and c**u** have opposite directions.

Defn: The *length (norm, magnitude)* of \mathbf{u} is its distance from $\mathbf{0}$ and is denoted by

$$||\mathbf{u}|| = d(\mathbf{0}, \mathbf{u}) = \sqrt{u_1^2 + u_2^2 + \dots + u_m^2}.$$

Two vectors are equivalent if they have the same direction and length.

Parallelogram rule:

Addition: the directed line segment starting at \mathbf{u} and ending at $\mathbf{u} + \mathbf{v}$ is equivalent to \mathbf{v}

Subtraction: the directed line segment starting at \mathbf{u} and ending at \mathbf{v} is equivalent to $\mathbf{v} - \mathbf{u}$

However, we will sometimes abuse notation.

Thm 3.2.1 (or thm 4.1.1 p163)
a.)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

b.) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
c.) $\mathbf{u} + \mathbf{0} = \mathbf{u}$
d.) $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
e.) $(cd)\mathbf{u} = c(d\mathbf{u})$
f.) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
g.) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
h.) $1\mathbf{u} = \mathbf{u}$

Sometimes we will write the vector \mathbf{x} as a row vector: $(x_1, ..., x_n)$.

Other times we will write the vector \mathbf{x} as a column vector:

$$\begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{bmatrix}$$