1.3 Vectors in R^{m}

Defn: The vector \mathbf{w} is a linear combination of the vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ if there exist scalars c_{1}, \ldots, c_{n} such that

$$
\mathbf{w}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\ldots+c_{n} \mathbf{v}_{\mathbf{n}}
$$

If possible, write $\left[\begin{array}{r}3 \\ -5\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}9 \\ 7\end{array}\right],\left[\begin{array}{l}4 \\ 8\end{array}\right]$.
$\left[\begin{array}{rrr}9 & 4 & 3 \\ 7 & 8 & -5\end{array}\right] \rightarrow\left[\begin{array}{rrr}9 & 4 & 3 \\ 0 & \frac{44}{9} & -\frac{66}{9}\end{array}\right] \rightarrow\left[\begin{array}{rrr}9 & 4 & 3 \\ 0 & 1 & -\frac{3}{2}\end{array}\right]$

$$
\rightarrow\left[\begin{array}{rrr}
9 & 0 & 9 \\
0 & 1 & -\frac{3}{2}
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -\frac{3}{2}
\end{array}\right]
$$

Thus, $\left[\begin{array}{r}3 \\ -5\end{array}\right]=\left[\begin{array}{l}9 \\ 7\end{array}\right]-(3 / 2)\left[\begin{array}{l}4 \\ 8\end{array}\right]$

If possible, write $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}9 \\ 7\end{array}\right],\left[\begin{array}{l}4 \\ 8\end{array}\right]$] If possible, write $\left[\begin{array}{r}3 \\ -5\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}-4 \\ -8\end{array}\right]$

If possible, write $\left[\begin{array}{r}3 \\ -5\end{array}\right]$ as a linear comb'n of $\left[\begin{array}{r}3 \\ -5\end{array}\right],\left[\begin{array}{r}-30 \\ 50\end{array}\right]$.

If possible, write $\left[\begin{array}{l}0 \\ 3 \\ 6\end{array}\right]$ as al. c. of $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]\right\}$

If possible, write $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ as a l. c. of $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]\right\}$
$\left[\begin{array}{lllll}1 & 4 & 5 & 0 & 1 \\ 2 & 5 & 7 & 3 & 0 \\ 3 & 6 & 9 & 6 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}1 & 4 & 5 & 0 & 1 \\ 0 & -3 & -3 & 3 & -2 \\ 0 & -6 & -6 & 6 & -3\end{array}\right]$
$\rightarrow\left[\begin{array}{rrrrr}1 & 4 & 5 & 0 & 1 \\ 0 & -3 & -3 & 3 & -2 \\ 0 & 0 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}1 & 4 & 5 & 0 & * \\ 0 & 1 & 1 & -1 & * \\ 0 & 0 & 0 & 0 & *\end{array}\right]$
$\rightarrow\left[\begin{array}{rrrrr}1 & 0 & 1 & 4 & * \\ 0 & 1 & 1 & -1 & * \\ 0 & 0 & 0 & 0 & *\end{array}\right]$
$\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}=$ the set of all linear combinations, $c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\ldots+c_{n} \mathbf{v}_{\mathbf{n}}$, of the vectors in $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$
$=$ the hyperplane containing the vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ anchored at $\mathbf{b}=\mathbf{0}$
$=$ the hyperplane containing the points $\mathbf{0}, \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$

Let $A=\left[\mathbf{a}_{\mathbf{1}} \ldots \mathbf{a}_{\mathbf{n}}\right]$, where the a_{i} are k-vectors.
\mathbf{b} is in $\operatorname{span}\left\{\mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{n}}\right\}$ if and only if $A x=b$ has at least one solution.
$\operatorname{span}\left\{\mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{n}}\right\}=R^{k}$ if and only if $A x=b$ has at least one solution for every \mathbf{b}
(leading entry in every row).

Does $\operatorname{span}\left\{\left[\begin{array}{l}9 \\ 7\end{array}\right],\left[\begin{array}{l}4 \\ 8\end{array}\right]\right\}=R^{2}$? Yes, since
$x_{1}\left[\begin{array}{l}9 \\ 7\end{array}\right]+x_{2}\left[\begin{array}{l}4 \\ 8\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ has a sol'n for all $\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$.
I.e., $\left[\begin{array}{ll}9 & 4 \\ 7 & 8\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ has a sol'n for all $\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$.

Check:
$\left[\begin{array}{ccc}9 & 4 & b_{1} \\ 7 & 8 & b_{2}\end{array}\right] \rightarrow\left[\begin{array}{ccc}9 & 4 & b_{1} \\ 0 & 8-\frac{7}{9}(4) & b_{2}-\frac{7}{9}\left(b_{1}\right)\end{array}\right]$
Thus solution exists no matter what b_{1} and b_{2} are.

Short-cut: $\left[\begin{array}{l}4 \\ 8\end{array}\right]$ is not a multiple of $\left[\begin{array}{l}9 \\ 7\end{array}\right]$.
Thus span of $\left\{\left[\begin{array}{l}9 \\ 7\end{array}\right],\left[\begin{array}{l}4 \\ 8\end{array}\right]\right\}$ is 2-dimensional.
The only 2 -dimensional plane in R^{2} is R^{2}.
Note this short-cut only works in R^{2}

Does $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}-4 \\ -8\end{array}\right]\right\}=R^{2} ?$

Does $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6 \\ 6\end{array}\right],\left[\begin{array}{l}5 \\ 7 \\ 9 \\ 9\end{array}\right]\right\}=R^{4} ?$
$\left.\begin{array}{c}\text { Does } \operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}2 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{r}4 \\ 4 \\ -6\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{r}6 \\ 2 \\ -1\end{array}\right]\right.\end{array},\left[\begin{array}{r}10 \\ 4 \\ -3\end{array}\right]\right\}$
$\left[\begin{array}{rrrrrr}0 & 2 & 4 & 0 & 6 & 10 \\ 0 & 2 & 4 & -1 & 2 & 4 \\ 0 & -3 & -6 & 2 & -1 & -3\end{array}\right]$
is row equivalent to
$\left[\begin{array}{llllll}0 & 1 & 2 & 0 & 3 & 5 \\ 0 & 0 & 0 & 1 & 4 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Is $\left[\begin{array}{r}3 \\ -5\end{array}\right]$ in the span of $\left\{\left[\begin{array}{l}9 \\ 7\end{array}\right],\left[\begin{array}{l}4 \\ 8\end{array}\right]\right\} ?$
Yes, since $\left[\begin{array}{r}3 \\ -5\end{array}\right]=x_{1}\left[\begin{array}{l}9 \\ 7\end{array}\right]+x_{2}\left[\begin{array}{l}4 \\ 8\end{array}\right]$ has a solution.
Check:
$\left[\begin{array}{rrr}9 & 4 & 3 \\ 7 & 8 & -5\end{array}\right] \rightarrow\left[\begin{array}{ccc}9 & 4 & 3 \\ 0 & 8-\frac{7}{9}(4) & -5-\frac{7}{9}(3)\end{array}\right]$
Thus solution exists.
Short-cut: $\operatorname{span}\left\{\left[\begin{array}{l}9 \\ 7\end{array}\right],\left[\begin{array}{l}4 \\ 8\end{array}\right]\right\}=R^{2}$

Is $\left[\begin{array}{r}3 \\ -5\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}-4 \\ -8\end{array}\right]\right\}$?

Is $\left[\begin{array}{l}10 \\ 20\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}-4 \\ -8\end{array}\right]\right\}$?

Is $\left[\begin{array}{l}0 \\ 3 \\ 6\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]\right\} ?$
$\left[\begin{array}{llll}1 & 4 & 5 & 0 \\ 2 & 5 & 7 & 3 \\ 3 & 6 & 9 & 6\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 4 & 5 & 0 \\ 0 & -3 & -3 & 3 \\ 0 & -6 & -6 & 6\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 4 & 5 & 0 \\ 0 & -3 & -3 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$

Is $\left[\begin{array}{l}0 \\ 3 \\ 6\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right\}$?
Is $\left[\begin{array}{l}0 \\ 3 \\ 6\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{l}10 \\ 20 \\ 30\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right\}$?
Is $\left[\begin{array}{l}0 \\ 3 \\ 6\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}10 \\ 20 \\ 30\end{array}\right]\right\}$?
Is $\left[\begin{array}{l}0 \\ 3 \\ 6\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}4 \\ -3 \\ 0\end{array}\right]\right\}$?
Is $\left[\begin{array}{l}0 \\ 3 \\ 6\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{r}0 \\ -1 \\ -2\end{array}\right]\right\}$?

