Solve the following systems of equations:

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$$

- A NON-homogeneous system of LINEAR equations
- a.) Exactly one solution.
- b.) Infinite number of solutions
- c.) No solutions
- A system of equations is $A\mathbf{x} = \mathbf{b}$ is **homogeneous** if $\mathbf{b} = \mathbf{0}$.

A homogeneous system of LINEAR equations can have

- a.) Exactly one solution $(\mathbf{x} = \mathbf{0})$
- b.) Infinite number of solutions (including, of course, $\mathbf{x} = \mathbf{0}$).

Solve the following systems of equations:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 0 & 0 & 2 \\ 4 & 5 & 6 & 0 & 3 & 5 \\ 7 & 8 & 9 & 0 & 0 & 8 \end{bmatrix}$$

$$\downarrow R_2 - 4R_1 \rightarrow R_2, \quad R_3 - 7R_1 \rightarrow R_3$$

$$\begin{bmatrix} 1 & 2 & 3 & 0 & 0 & 2 \\ 0 & -3 & -6 & 0 & 3 & -3 \\ 0 & -6 & -12 & -7 & 0 & -6 \end{bmatrix}$$

$$\downarrow R_3 - 2R_1 \rightarrow R_3$$

$$\begin{bmatrix} 1 & 2 & 3 & 0 & 0 & 2 \\ 0 & -3 & -6 & 0 & 3 & -3 \\ 0 & 0 & 0 & 0 & -6 & 0 \end{bmatrix}$$

 \downarrow already know sol'n to system b.

$$\begin{bmatrix} 1 & 2 & 3 & 0 & 2 \\ 0 & -3 & -6 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\downarrow -\frac{1}{3}R_2 \rightarrow R_2$$

$$\begin{bmatrix} 1 & 2 & 3 & 0 & 2 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2 \rightarrow R_1} \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$

Note that $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}$ and $A(c\mathbf{x}) = cA\mathbf{x}$ For example,

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right) = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}(x_1 + y_1) & a_{12}(x_2 + y_2) \\ a_{21}(x_1 + y_1) & a_{22}(x_2 + y_2) \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}x_1 + a_{11}y_1 & a_{12}x_2 + a_{12}y_2 \\ a_{21}x_1 + a_{21}y_1 & a_{22}x_2 + a_{22}y_2 \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}x_1 & a_{12}x_2 \\ a_{21}x_1 & a_{22}x_2 \end{bmatrix} + \begin{bmatrix} a_{11}y_1 & a_{12}y_2 \\ a_{21}y_1 & a_{22}y_2 \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \left(c \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} cx_1 \\ cx_2 \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}cx_1 & a_{12}cx_2 \\ a_{21}cx_1 & a_{22}cx_2 \end{bmatrix} = c \begin{bmatrix} a_{11}x_1 & a_{12}x_2 \\ a_{21}x_1 & a_{22}x_2 \end{bmatrix} = c \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Suppose $A\mathbf{u} = \mathbf{0}$, $A\mathbf{v} = \mathbf{0}$, and $A\mathbf{p} = \mathbf{b}$