Solve the following systems of equations:

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
$$

A NON-homogeneous system of LINEAR equations
a.) Exactly one solution.
b.) Infinite number of solutions
c.) No solutions

A system of equations is $A \mathbf{x}=\mathbf{b}$ is homogeneous if $\mathbf{b}=\mathbf{0}$.
A homogeneous system of LINEAR equations can have
a.) Exactly one solution $(\mathbf{x}=\mathbf{0})$
b.) Infinite number of solutions
(including, of course, $\mathbf{x}=\mathbf{0}$).
Solve the following systems of equations:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right]
$$

$\left[\begin{array}{llllll}1 & 2 & 3 & 0 & 0 & 2 \\ 4 & 5 & 6 & 0 & 3 & 5 \\ 7 & 8 & 9 & 0 & 0 & 8\end{array}\right]$
$\downarrow R_{2}-4 R_{1} \rightarrow R_{2}, \quad R_{3}-7 R_{1} \rightarrow R_{3}$
$\left[\begin{array}{rrrrrr}1 & 2 & 3 & 0 & 0 & 2 \\ 0 & -3 & -6 & 0 & 3 & -3 \\ 0 & -6 & -12 & -7 & 0 & -6\end{array}\right]$
$\downarrow R_{3}-2 R_{1} \rightarrow R_{3}$
$\left[\begin{array}{rrrrrr}1 & 2 & 3 & 0 & 0 & 2 \\ 0 & -3 & -6 & 0 & 3 & -3 \\ 0 & 0 & 0 & 0 & -6 & 0\end{array}\right]$
\downarrow already know sol'n to system b.
$\left[\begin{array}{rrrrr}1 & 2 & 3 & 0 & 2 \\ 0 & -3 & -6 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\downarrow-\frac{1}{3} R_{2} \rightarrow R_{2}$
$\left[\begin{array}{ccccc}1 & 2 & 3 & 0 & 2 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \quad R_{1}-2 \overrightarrow{R_{2}} \rightarrow R_{1}\left[\begin{array}{rrrrr}1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=
$$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=
$$

Note that $A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}$ and $A(c \mathbf{x})=c A \mathbf{x}$
For example,
$\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]\right)=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{l}x_{1}+y_{1} \\ x_{2}+y_{2}\end{array}\right]$
$=\left[\begin{array}{ll}a_{11}\left(x_{1}+y_{1}\right) & a_{12}\left(x_{2}+y_{2}\right) \\ a_{21}\left(x_{1}+y_{1}\right) & a_{22}\left(x_{2}+y_{2}\right)\end{array}\right]$
$=\left[\begin{array}{ll}a_{11} x_{1}+a_{11} y_{1} & a_{12} x_{2}+a_{12} y_{2} \\ a_{21} x_{1}+a_{21} y_{1} & a_{22} x_{2}+a_{22} y_{2}\end{array}\right]$
$=\left[\begin{array}{ll}a_{11} x_{1} & a_{12} x_{2} \\ a_{21} x_{1} & a_{22} x_{2}\end{array}\right]+\left[\begin{array}{ll}a_{11} y_{1} & a_{12} y_{2} \\ a_{21} y_{1} & a_{22} y_{2}\end{array}\right]$
$=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$
$\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left(c\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{l}c x_{1} \\ c x_{2}\end{array}\right]$
$=\left[\begin{array}{ll}a_{11} c x_{1} & a_{12} c x_{2} \\ a_{21} c x_{1} & a_{22} c x_{2}\end{array}\right]=c\left[\begin{array}{ll}a_{11} x_{1} & a_{12} x_{2} \\ a_{21} x_{1} & a_{22} x_{2}\end{array}\right]=c\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
Suppose $A \mathbf{u}=\mathbf{0}, A \mathbf{v}=\mathbf{0}$, and $A \mathbf{p}=\mathbf{b}$

