1.7: Linear Independence.

Defn: The set of vectors $\{\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}\}$ is **linearly independent** if and only if the equation $c_1\mathbf{a_1} + c_2\mathbf{a_2} + ... + c_n\mathbf{a_n} = \mathbf{0}$ has only the trivial solution.

Defn: If S is not linearly independent, then it is **linearly dependent**.

Is $\left\{ \begin{bmatrix} 9\\7 \end{bmatrix}, \begin{bmatrix} 4\\8 \end{bmatrix}, \begin{bmatrix} 3\\-5 \end{bmatrix} \right\}$ is linearly independent?

 $\{\mathbf{a_1}, ..., \mathbf{a_n}\}$ is linearly independent if and only if $A\mathbf{x} = \mathbf{0}$ has exactly one solution (pivot in every column of echelon form of coefficient matrix A).

 $\{\mathbf{a_1}, ..., \mathbf{a_n}\}$ is linearly dependent if and only if $A\mathbf{x} = \mathbf{0}$ has an infinite number of solutions. (at least one free variable)

Thm: Let $S = \{\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}\}$ be a set of vectors in R^k . Then S is linearly dependent if and only if the vector equation $c_1\mathbf{a_1} + c_2\mathbf{a_2} + ... + c_n\mathbf{a_n} = \mathbf{0}$ has an infinite number of solutions.

Is
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 5\\7\\9 \end{bmatrix} \right\}$$
 linearly independent?

•

 $\left\{ \begin{bmatrix} 9\\7 \end{bmatrix}, \begin{bmatrix} 4\\8 \end{bmatrix}, \begin{bmatrix} 3\\-5 \end{bmatrix} \right\} \text{ is linearly dependent since} \\ \begin{bmatrix} 9&4&3\\7&8&-5 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$

has an infinite number of solutions

$$\left(\text{In particular} \begin{bmatrix} 9 & 4 & 3 \\ 7 & 8 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{3}{2} \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)$$

or equivalently,

$$\begin{bmatrix} 9\\7 \end{bmatrix} - \begin{pmatrix} 3\\2 \end{pmatrix} \begin{bmatrix} 4\\8 \end{bmatrix} - \begin{bmatrix} 3\\-5 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$$

or equivalently,

$$\begin{bmatrix} 3\\-5 \end{bmatrix} = \begin{bmatrix} 9\\7 \end{bmatrix} - (3/2) \begin{bmatrix} 4\\8 \end{bmatrix}$$

or alternatively,

3 vectors in \mathbb{R}^2 cannot be linearly independent.

Thm: Let S be a set of n vectors in \mathbb{R}^k where n > k. Then S is linearly dependent.

Thm: A set of vectors is linearly dependent if one of the vectors can be written as a linear combination of the other vectors.

A set of vectors is linearly independent if none of the vectors can be written as a linear combination of the other vectors.

Is
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 10\\20\\30 \end{bmatrix} \right\}$$
 linearly independent?
Is $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}$ linearly independent?
Is $\left\{ \begin{bmatrix} 10\\20\\30 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}$ linearly independent?

Is
$$\left\{ \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6\\2 \end{bmatrix}, \begin{bmatrix} 5\\7\\9\\1 \end{bmatrix}, \begin{bmatrix} 6\\2\\1\\5 \end{bmatrix}, \begin{bmatrix} 4\\3\\4\\6 \end{bmatrix}, \begin{bmatrix} 1\\4\\3\\7 \end{bmatrix} \right\}$$

linearly independent?

Is
$$\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 4\\-3\\0 \end{bmatrix} \right\}$$
 linearly independent?

Is
$$\left\{ \begin{bmatrix} 0\\ -1\\ -2 \end{bmatrix} \right\}$$
 linearly independent?

Is
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 5\\7\\9 \end{bmatrix} \right\}$$
 linearly independent?
$$\begin{bmatrix} 1 & 4 & 5\\2 & 5 & 7\\3 & 6 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 5\\0 & -3 & -3\\0 & -6 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 5\\0 & -3 & -3\\0 & 0 & 0 \end{bmatrix}$$

2.1: Operations on Matrices

$$A = (a_{ij}), B = (b_{ij}), C = (c_{ij}).$$

Defn: Two matrices A and B are equal, if they have the same dimension and $a_{ij} = b_{ij}$ for all i = 1, ..., n, j = 1, ..., m

Defn: $A + B = (a_{ij} + b_{ij}).$ Ex: $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{vmatrix} 5 & 6 \\ 7 & 8 \end{vmatrix} =$ Defn: $cA = (ca_{ij})$. $3 \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} =$ Defn: -B = (-1)B. Defn: A - B = A + (-B). Defn: The zero matrix = $\theta = (a_{ij})$ where $a_{ij} = 0$ for all i, j. Ex: $\begin{bmatrix} 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{vmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{vmatrix}$, ...

Defn: The identity matrix $= I = (a_{ij})$ where $a_{ij} = 0$ for all $i \neq j$ and $a_{ii} = 1$ for all i and I is a square matrix

Ex:
$$\begin{bmatrix} 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, ...

 $A = (a_{ij}), B = (b_{ij}), C = (c_{ij}).$

Suppose A is an $m \times k$ matrix, B is an $k \times n$. AB = C where

$$c_{ij} = row(i) \text{ of } A \cdot column(j) \text{ of } B$$
$$= a_{i1}b_{1j} + a_{i2}b_{2k} + \dots + a_{ir}b_{rk}.$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} =$$