1.7: Linear Independence.

Defn: The set of vectors $\left\{\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{n}}\right\}$ is linearly independent if and only if the equation $c_{1} \mathbf{a}_{\mathbf{1}}+c_{2} \mathbf{a}_{\mathbf{2}}+\ldots+c_{n} \mathbf{a}_{\mathbf{n}}=\mathbf{0}$ has only the trivial solution.

Defn: If \mathcal{S} is not linearly independent, then it is linearly dependent.

Is $\left\{\left[\begin{array}{l}9 \\ 7\end{array}\right],\left[\begin{array}{l}4 \\ 8\end{array}\right],\left[\begin{array}{r}3 \\ -5\end{array}\right]\right\}$ is linearly independent?
$\left\{\mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{n}}\right\}$ is linearly independent if and only if $A \mathbf{x}=\mathbf{0}$ has exactly one solution (pivot in every column of echelon form of coefficient matrix A).
$\left\{\mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{n}}\right\}$ is linearly dependent if and only if $A \mathbf{x}=\mathbf{0}$ has an infinite number of solutions. (at least one free variable)

Thm: Let $\mathcal{S}=\left\{\mathbf{a}_{\mathbf{1}}, \mathbf{\mathbf { a } _ { \mathbf { 2 } }}, \ldots, \mathbf{a}_{\mathbf{n}}\right\}$ be a set of vectors in R^{k}. Then \mathcal{S} is linearly dependent if and only if the vector equation $c_{1} \mathbf{a}_{\mathbf{1}}+c_{2} \mathbf{a}_{\mathbf{2}}+\ldots+c_{n} \mathbf{a}_{\mathbf{n}}=\mathbf{0}$ has an infinite number of solutions.

Is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]\right\}$ linearly independent?
$\left\{\left[\begin{array}{l}9 \\ 7\end{array}\right],\left[\begin{array}{l}4 \\ 8\end{array}\right],\left[\begin{array}{r}3 \\ -5\end{array}\right]\right\}$ is linearly dependent since

$$
\left[\begin{array}{rrr}
9 & 4 & 3 \\
7 & 8 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

has an infinite number of solutions
$\left(\right.$ In particular $\left.\left[\begin{array}{ccc}9 & 4 & 3 \\ 7 & 8 & -5\end{array}\right]\left[\begin{array}{r}1 \\ -\frac{3}{2} \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
or equivalently,

$$
\left[\begin{array}{l}
9 \\
7
\end{array}\right]-\left(\frac{3}{2}\right)\left[\begin{array}{l}
4 \\
8
\end{array}\right]-\left[\begin{array}{r}
3 \\
-5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

or equivalently,

$$
\left[\begin{array}{r}
3 \\
-5
\end{array}\right]=\left[\begin{array}{l}
9 \\
7
\end{array}\right]-(3 / 2)\left[\begin{array}{l}
4 \\
8
\end{array}\right]
$$

or alternatively,
3 vectors in R^{2} cannot be linearly independent.

Is $\{9+7 t, 4+8 t, 3-5 t\}$ linearly independent?

Thm: Let \mathcal{S} be a set of n vectors in R^{k} where $n>k$. Then \mathcal{S} is linearly dependent.

Thm: A set of vectors is linearly dependent if one of the vectors can be written as a linear combination of the other vectors.

A set of vectors is linearly independent if none of the vectors can be written as a linear combination of the other vectors.

Is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}10 \\ 20 \\ 30\end{array}\right]\right\}$ linearly independent?

Is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right\}$ linearly independent?

Is $\left\{\left[\begin{array}{l}10 \\ 20 \\ 30\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right\}$ linearly independent?

Is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6 \\ 2\end{array}\right],\left[\begin{array}{l}5 \\ 7 \\ 9 \\ 1\end{array}\right],\left[\begin{array}{l}6 \\ 2 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{l}4 \\ 3 \\ 4 \\ 6\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 3 \\ 7\end{array}\right]\right\}$
linearly independent?

Is $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}4 \\ -3 \\ 0\end{array}\right]\right\}$ linearly independent?

Is $\left\{\left[\begin{array}{r}0 \\ -1 \\ -2\end{array}\right]\right\}$ linearly independent?

Is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]\right\}$ linearly independent?
$\left[\begin{array}{lll}1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 4 & 5 \\ 0 & -3 & -3 \\ 0 & -6 & -6\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 4 & 5 \\ 0 & -3 & -3 \\ 0 & 0 & 0\end{array}\right]$
2.1: Operations on Matrices
$A=\left(a_{i j}\right), B=\left(b_{i j}\right), C=\left(c_{i j}\right)$.
Defn: Two matrices A and B are equal, if they have the same dimension and $a_{i j}=b_{i j}$ for all $i=1, \ldots, n, j=1, \ldots, m$

Defn: $A+B=\left(a_{i j}+b_{i j}\right)$.
Ex: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]+\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=$
Defn: $c A=\left(c a_{i j}\right)$.
$3\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=$
Defn: $-B=(-1) B$.
Defn: $A-B=A+(-B)$.
Defn: The zero matrix $=0=\left(a_{i j}\right)$ where $a_{i j}=0$ for all i, j.
Ex: $[0],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right], \ldots$

Defn: The identity matrix $=I=\left(a_{i j}\right)$ where $a_{i j}=0$ for all $i \neq j$ and $a_{i i}=1$ for all i and I is a square matrix
Ex: $[1],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \ldots$
$A=\left(a_{i j}\right), B=\left(b_{i j}\right), C=\left(c_{i j}\right)$.
Suppose A is an $m \times k$ matrix, B is an $k \times n$. $A B=C$ where

$$
\begin{aligned}
& c_{i j}=\operatorname{row}(i) \text { of } A \cdot \operatorname{column}(j) \text { of } B \\
& =a_{i 1} b_{1 j}+a_{i 2} b_{2 k}+\ldots+a_{i r} b_{r k} .
\end{aligned}
$$

$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ccc}5 & 6 & 7 \\ 8 & 9 & 10\end{array}\right]=$
$\left[\begin{array}{ccc}5 & 6 & 7 \\ 8 & 9 & 10\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 0 & 1 \\ 1 & 0\end{array}\right]=$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ccc}5 & 6 & 7 \\ 8 & 9 & 10\end{array}\right]=$

