[10] 1a.) Find the standard matrix for the linear transformation $T$ defined by the formula $T\left(\left(x_{1}, x_{2}\right)\right)=\left(5 x_{1}+3 x_{2}, x_{1}-4 x_{2}, x_{2}, 0\right)$.

Answer 1a.) $\qquad$ -,
[2] 1b.) The domain of $T$ is $\qquad$ .
[2] 1c.) The codomain of $T$ is $\qquad$ .
[2] 1d.) Is $T$ one-to-one? $\qquad$
[2] 1e.) Is $T$ onto? $\qquad$
[2] 1f.) $T\left(\left[\mathbf{e}_{\mathbf{1}}\right]\right)=$
[3] 1g.) Find three vectors which are in the image of $T$.

Answer 1g.) $\qquad$
[3] 1h.) Find two vectors in the codomain of $T$ which are NOT in the image of $T$.
$\qquad$
2.) Let $A=\left[\begin{array}{lllll}1 & 0 & 2 & 3 & 0 \\ 1 & 0 & 2 & 3 & 0 \\ 1 & 0 & 5 & 9 & 3\end{array}\right]$.

Name: Circle one: Wednesday/Thursday
[6] 2a.) Find a basis for the column space of $A$.

Answer 2a.) $\qquad$
[6] 2b.) Find a basis for the row space of $A$.

Answer 2b.) $\qquad$
[8] 2c.) Find a basis for the nullspace of $A$.

Answer 2c.)
[3] 2d.) $\operatorname{Rank}(A)=$ $\qquad$ .
[3] 2e.) $\operatorname{Nullity}(A)=$ $\qquad$ .
[3] 2f.) Write one of the columns of $A$ as a linear combination of the other columns of $A$.

Answer 2f.) $\qquad$
[2] 2g.) Solve $A x=0$.

Name:
Circle one: Wednesday/Thursday
[12] 3a.) Write as $1-8 t+5 t^{2}$ as a linear combination of $1+4 t-3 t^{2}$ and $2+5 t-4 t^{2}$.

Answer 3a.) $1-8 t+5 t^{2}=$ $\qquad$
[3] 3b.) Is $\left\{1+4 t-3 t^{2}, 2+5 t-4 t^{2}\right\}$ a basis for $\operatorname{span}\left\{1+4 t-3 t^{2}, 2+5 t-4 t^{2}\right\} ?$ $\qquad$ -
[3] 3c.) Is $\left\{1+4 t-3 t^{2}, 2+5 t-4 t^{2}\right\}$ a basis for $P^{2}$ ? $\qquad$ .
[2] 3d.) Is $t^{2}$ in the span of $\left\{1+4 t-3 t^{2}, 2+5 t-4 t^{2}\right\}$ ? $\qquad$ .
[2] 3e.) Is $\left\{1+4 t-3 t^{2}, 2+5 t-4 t^{2}, t^{2}\right\}$ a basis for $P^{2} ?$ $\qquad$ .
[4] 4a.) $(2,0,1,-3) \cdot(5,4,8,2)=$ $\qquad$
[3] 4b.) Is $(2,0,1,-3)$ orthogonal to $(5,4,8,2)$ ? $\qquad$
5.) Circle the correct answer and fill in the blank if appropriate.
[3] 5a.) Suppose that $A$ is a $4 \times 4$ matrix, $\operatorname{Rank}(A)=4$, and $\operatorname{Rank}[A \mid \mathbf{b}]=4$. Then $A \mathbf{x}=\mathbf{b}$ has
i.) no solution
ii) exactly one solution
iii) infinite number of solutions with $\qquad$ parameters (free variables).
[3] 5b.) Suppose that $A$ is a $4 \times 7$ matrix, $\operatorname{Rank}(A)=4$, and $\operatorname{Rank}[A \mid \mathbf{b}]=4$. Then $A \mathbf{x}=\mathbf{b}$ has
i.) no solution
ii) exactly one solution
iii) infinite number of solutions with $\qquad$ parameters.
[3] 5c.) Suppose that $A$ is a $4 \times 7$ matrix, $\operatorname{Rank}(A)=3$, and $\operatorname{Rank}[A \mid \mathbf{b}]=4$. Then $A \mathbf{x}=\mathbf{b}$ has
i.) no solution
ii) exactly one solution
iii) infinite number of solutions with $\qquad$ parameters.
[3] 5d.) Suppose that $A$ is a $3 \times 3$ matrix whose column space is a line through the origin. Then the nullspace of $A$ is
i.) the empty set.
ii.) a point.
iii.) a line.
iv.) a 2-dimensional plane.
v.) a 3-dimensional hyperplane.
[5] 6.) Give an example of a $3 \times 3$ matrix whose column space is a line through the origin.

